1,249 research outputs found

    Tumor-associated Endo180 requires stromal-derived LOX to promote metastatic prostate cancer cell migration on human ECM surfaces

    Get PDF
    The diverse composition and structure of extracellular matrix (ECM) interfaces encountered by tumor cells at secondary tissue sites can influence metastatic progression. Extensive in vitro and in vivo data has confirmed that metastasizing tumor cells can adopt different migratory modes in response to their microenvironment. Here we present a model that uses human stromal cell-derived matrices to demonstrate that plasticity in tumor cell movement is controlled by the tumor-associated collagen receptor Endo180 (CD280, CLEC13E, KIAA0709, MRC2, TEM9, uPARAP) and the crosslinking of collagen fibers by stromal-derived lysyl oxidase (LOX). Human osteoblast-derived and fibroblast-derived ECM supported a rounded ‘amoeboid-like’ mode of cell migration and enhanced Endo180 expression in three prostate cancer cell lines (PC3, VCaP, DU145). Genetic silencing of Endo180 reverted PC3 cells from their rounded mode of migration towards a bipolar ‘mesenchymal-like’ mode of migration and blocked their translocation on human fibroblast-derived and osteoblast-derived matrices. The concomitant decrease in PC3 cell migration and increase in Endo180 expression induced by stromal LOX inhibition indicates that the Endo180-dependent rounded mode of prostate cancer cell migration requires ECM crosslinking. In conclusion, this study introduces a realistic in vitro model for the study of metastatic prostate cancer cell plasticity and pinpoints the cooperation between tumor-associated Endo180 and the stiff microenvironment imposed by stromal-derived LOX as a potential target for limiting metastatic progression in prostate cancer

    Heterogeneous Relational Databases for a Grid-enabled Analysis Environment

    Get PDF
    Grid based systems require a database access mechanism that can provide seamless homogeneous access to the requested data through a virtual data access system, i.e. a system which can take care of tracking the data that is stored in geographically distributed heterogeneous databases. This system should provide an integrated view of the data that is stored in the different repositories by using a virtual data access mechanism, i.e. a mechanism which can hide the heterogeneity of the backend databases from the client applications. This paper focuses on accessing data stored in disparate relational databases through a web service interface, and exploits the features of a Data Warehouse and Data Marts. We present a middleware that enables applications to access data stored in geographically distributed relational databases without being aware of their physical locations and underlying schema. A web service interface is provided to enable applications to access this middleware in a language and platform independent way. A prototype implementation was created based on Clarens [4], Unity [7] and POOL [8]. This ability to access the data stored in the distributed relational databases transparently is likely to be a very powerful one for Grid users, especially the scientific community wishing to collate and analyze data distributed over the Grid

    Homeward bound or bound for a home? Assessing the capacity of dementia patients to make decisions about hospital discharge: Comparing practice with legal standards

    Get PDF
    Background This article stems from a larger project which considers ways of improving assessments of capacity and judgements about best interests in connection with people with dementia admitted to acute hospitals with respect to decisions about place of residence. Aims Our aim is to comment on how assessments of residence capacity are actually performed on general hospital wards compared with legal standards for the assessment of capacity set out in the Mental Capacity Act, 2005 (MCA). Method Our findings are grounded in ethnographic ward-based observations and in-depth interviews conducted in three hospital wards, in two hospitals (acute and rehabilitation), within two NHS healthcare trusts in the North of England over a period of nine months between 2008 and 2009. Twenty-nine patient cases were recruited to the study. We also draw from broader conceptions of capacity found in domestic and international legal, medical, ethical and social science literature. Results Our findings suggest that whilst professionals profess to be familiar with broad legal standards governing the assessment of capacity under the MCA, these standards are not routinely applied in practice in general hospital settings when assessing capacity to decide place of residence on discharge from hospital. We discuss whether the criteria set out in the MCA and the guidance in its Code of Practice are sufficient when assessing residence capacity, given the particular ambiguities and complexities of this capacity. Conclusions We conclude by suggesting that more specific legal standards are required when assessing capacity in this particular context

    Integrated spatial genomics reveals global architecture of single nuclei

    Get PDF
    Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies. Because individual cells appear to be highly variable at all these levels, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form ‘fixed points’ in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3–4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems

    Integrated spatial genomics reveals global architecture of single nuclei

    Get PDF
    Identifying the relationships between chromosome structures, nuclear bodies, chromatin states and gene expression is an overarching goal of nuclear-organization studies. Because individual cells appear to be highly variable at all these levels, it is essential to map different modalities in the same cells. Here we report the imaging of 3,660 chromosomal loci in single mouse embryonic stem (ES) cells using DNA seqFISH+, along with 17 chromatin marks and subnuclear structures by sequential immunofluorescence and the expression profile of 70 RNAs. Many loci were invariably associated with immunofluorescence marks in single mouse ES cells. These loci form ‘fixed points’ in the nuclear organizations of single cells and often appear on the surfaces of nuclear bodies and zones defined by combinatorial chromatin marks. Furthermore, highly expressed genes appear to be pre-positioned to active nuclear zones, independent of bursting dynamics in single cells. Our analysis also uncovered several distinct mouse ES cell subpopulations with characteristic combinatorial chromatin states. Using clonal analysis, we show that the global levels of some chromatin marks, such as H3 trimethylation at lysine 27 (H3K27me3) and macroH2A1 (mH2A1), are heritable over at least 3–4 generations, whereas other marks fluctuate on a faster time scale. This seqFISH+-based spatial multimodal approach can be used to explore nuclear organization and cell states in diverse biological systems

    Species-wide Whole Genome Sequencing Reveals Historical Global Spread And Recent Local Persistence In Shigella Flexneri

    Get PDF
    Shigella flexneri is the most common cause of bacterial dysentery in low-income countries. Despite this, S. flexneri remains largely unexplored from a genomic standpoint and is still described using a vocabulary based on serotyping reactions developed over half-a-century ago. Here we combine whole genome sequencing with geographical and temporal data to examine the natural history of the species. Our analysis subdivides S. flexneri into seven phylogenetic groups (PGs); each containing two-or-more serotypes and characterised by distinct virulence gene complement and geographic range. Within the S. flexneri PGs we identify geographically restricted sub-lineages that appear to have persistently colonised regions for many decades to over 100 years. Although we found abundant evidence of antimicrobial resistance (AMR) determinant acquisition, our dataset shows no evidence of subsequent intercontinental spread of antimicrobial resistant strains. The pattern of colonisation and AMR gene acquisition suggest that S. flexneri has a distinct life-cycle involving local persistence. DOI: 10.7554/eLife.07335.0014Wellcome Trust [098051]Wellcome Trust/NISCHR ISSF project at Cardiff UniversityMRC [MR/L015080/1]Cardiff University - Cardiff University Research Infrastructure Fund)Institut PasteurInstitut de Veille SanitaireFrench Government 'Investissement d'Avenir' program (Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence) [ANR-10-LABX-62-IBEID

    Type 2 cannabinoid receptor expression on microglial cells regulates neuroinflammation during graft-versus-host disease

    Get PDF
    Neuroinflammation is a recognized complication of immunotherapeutic approaches such as immune checkpoint inhibitor treatment, chimeric antigen receptor therapy, and graft versus host disease (GVHD) occurring after allogeneic hematopoietic stem cell transplantation. While T cells and inflammatory cytokines play a role in this process, the precise interplay between the adaptive and innate arms of the immune system that propagates inflammation in the central nervous system remains incompletely understood. Using a murine model of GVHD, we demonstrate that type 2 cannabinoid receptor (CB2R) signaling plays a critical role in the pathophysiology of neuroinflammation. In these studies, we identify that CB2R expression on microglial cells induces an activated inflammatory phenotype that potentiates the accumulation of donor-derived proinflammatory T cells, regulates chemokine gene regulatory networks, and promotes neuronal cell death. Pharmacological targeting of this receptor with a brain penetrant CB2R inverse agonist/antagonist selectively reduces neuroinflammation without deleteriously affecting systemic GVHD severity. Thus, these findings delineate a therapeutically targetable neuroinflammatory pathway and have implications for the attenuation of neurotoxicity after GVHD and potentially other T cell-based immunotherapeutic approaches

    Nox4 reprograms cardiac substrate metabolism via protein O-GlcNAcylation to enhance stress adaptation.

    Get PDF
    Cardiac hypertrophic remodeling during chronic hemodynamic stress is associated with a switch in preferred energy substrate from fatty acids to glucose, usually considered to be energetically favorable. The mechanistic interrelationship between altered energy metabolism, remodeling, and function remains unclear. The ROS-generating NADPH oxidase-4 (Nox4) is upregulated in the overloaded heart, where it ameliorates adverse remodeling. Here, we show that Nox4 redirects glucose metabolism away from oxidation but increases fatty acid oxidation, thereby maintaining cardiac energetics during acute or chronic stresses. The changes in glucose and fatty acid metabolism are interlinked via a Nox4-ATF4-dependent increase in the hexosamine biosynthetic pathway, which mediates the attachment of O-linked N-acetylglucosamine (O-GlcNAcylation) to the fatty acid transporter CD36 and enhances fatty acid utilization. These data uncover a potentially novel redox pathway that regulates protein O-GlcNAcylation and reprograms cardiac substrate metabolism to favorably modify adaptation to chronic stress. Our results also suggest that increased fatty acid oxidation in the chronically stressed heart may be beneficial
    corecore