19 research outputs found

    Mesopredatory fishes from the subtropical upwelling region off NW-Africa characterised by their parasite fauna

    Get PDF
    Eastern boundary upwelling provides the conditions for high marine productivity in the Canary Current System off NW-Africa. Despite its considerable importance to fisheries, knowledge on this marine ecosystem is only limited. Here, parasites were used as indicators to gain insight into the host ecology and food web of two pelagic fish species, the commercially important species Trichiurus lepturus Linnaeus, 1758, and Nealotus tripes Johnson, 1865. Fish specimens of T. lepturus (n = 104) and N. tripes (n = 91), sampled from the Canary Current System off the Senegalese coast and Cape Verde Islands, were examined, collecting data on their biometrics, diet and parasitisation. In this study, the first parasitological data on N. tripes are presented. T. lepturus mainly preyed on small pelagic Crustacea and the diet of N. tripes was dominated by small mesopelagic Teleostei. Both host species were infested by mostly generalist parasites. The parasite fauna of T. lepturus consisted of at least nine different species belonging to six taxonomic groups, with a less diverse fauna of ectoparasites and cestodes in comparison to studies in other coastal ecosystems (Brazil Current and Kuriosho Current). The zoonotic nematode Anisakis pegreffii occurred in 23% of the samples and could pose a risk regarding food safety. The parasite fauna of N. tripes was composed of at least thirteen species from seven different taxonomic groups. Its most common parasites were digenean ovigerous metacercariae, larval cestodes and a monogenean species (Diclidophoridae). The observed patterns of parasitisation in both host species indicate their trophic relationships and are typical for mesopredators from the subtropical epi- and mesopelagic. The parasite fauna, containing few dominant species with a high abundance, represents the typical species composition of an eastern boundary upwelling ecosystem

    Diversität und Zoogeographie metazoischer Fischparasiten aus dem Südpolarmeer

    No full text
    Die vorliegende kumulative, publikationsbasierte Disserationsschrift zum Thema „Diversität und Zoogeographie metazoischer Fischparasiten aus dem Südpolarmeer“ gibt einen zusammenfassenden Überblick über die von mir verfasseten ausgewählten drei (ISI-)Publiaktionen. Diese sind im Anhang (Kapitel 6) in chronologischer Reihenfolge aufgeführt. Die Verweise zu den Publikationen sind im Text mit den römischen Ziffern I-III (s.u.) gekennzeichnet. Die für die Promotion relevanten Publikationen wurden wie folgt publiziert: I Münster J, Kochmann J, Klimpel S, Klapper R, Kuhn T (2016) Parasite fauna of Antarctic Macrourus whitsoni (Gadiformes: Macrouridae) in comparison with closely related macrourids. Parasites & Vectors 9:403 II Münster J, Kochmann J, Grigat J, Klimpel S, Kuhn T (2017) Parasite fauna of the Antarctic dragonfish Parachaenichthys charcoti (Perciformes: Bathydraconidae) and closely related Bathydraconidae from the Antarctic Peninsula, Southern Ocean. Parasites & Vectors 10:235 III Kuhn T, Zizka VMA, Münster J, Klapper R, Mattiucci S, Kochmann J, Klimpel S (2018) Lighten up the dark: metazoan parasites as indicators for the ecology of Antarctic crocodile icefish (Channichthyidae) from the north-west Antarctic Peninsula. PeerJ 6, e4638 Diese drei Publikationen sind im Ergebnisteil (Kapitel 2) separat zusammengefasst und folgend im gemeinsamen Kontext diskutiert (Kapitel 3)

    Personal Augmented Space: Mobile 3D Visualisation and Interaction Study with Microblogging

    No full text
    Web 2.0 services such as Twitter or Facebook are all around us and with us every day through the introduction of smartphones and tablets alike. The ever increasing feature set, faster ways to connect to the Internet and larger screen real estate that mobile devices are equipped with, allow Web 2.0 services to flood users with more and more information. This avalanche of information becomes unmanageable in its complexity and quantity and turns into information overload. To counteract the users’ feeling of information overload a new 3D personalised augmented reality user space was designed and implemented. It employes the techniques such as augmented reality and information filtering in a 3D environment to reduce information complexity and information overload. This new application was developed for a tablet computer and focuses on the humans’ natural abilities of spatial awareness. To test the underlying assumptions a set of experiments was designed and user trials are conducted to investigate the usability and navigability as well as the perceived information load. Following the data gathering phase of the experiment, it was statistically analysed to compare two different approaches. For this purpose a 2D and a 3D version of the same application had been developed. Comparing the results of the user study, no statistically relevant difference in usability could be established. The results suggest that the users’ perception of information overload did not get better in the new 3D interface, and it did not get worse either. The results and observations analyses following the user experiment strongly suggest that information overload should be considered during the application development process of Web 2.0 applications. This research shows there is no usability loss when using the 3D interface over the 2D interface. Further research and development into the areas of spatial knowledge and awareness in 3D information systems may reduce the information load felt by users of current information rich systems

    Parasite fauna of the Antarctic dragonfish Parachaenichthys charcoti (Perciformes: Bathydraconidae) and closely related Bathydraconidae from the Antarctic Peninsula, Southern Ocean

    No full text
    Background: As members of the Notothenioidei - the dominant fish taxon in Antarctic waters - the family Bathydraconidae includes 12 genera and 17 species. The knowledge of these species inhabiting an isolated environment is rather fragmentary, including their parasite fauna. Studies on fish hosts and their associated parasites can help gain insights into even remote ecosystems and be used to infer ecological roles in food webs; however, ecological studies on the Bathydraconidae are scarce. Results: In this study, stomach contents and parasite fauna of the Antarctic dragonfish species Parachaenichthys charcoti (n = 47 specimens) as well as of Gerlachea australis (n = 5), Gymnodraco acuticeps (n = 9) and Racovitzia glacialis (n = 6) were examined. The parasite fauna of P. charcoti consisted of eight genera represented by 11 species, with three of them being new host records. Overall, 24 parasite genera and 26 species were found in the sampled fish, including eleven new host records. Conclusion: Analyses revealed that the majority of the parasite species found in the different fish hosts are endemic to Antarctic waters and are characterized by a broad host range. These findings are evidence for the current lack of knowledge and the need for further parasitological studies of fish species in this unique habitat

    Mesopredatory fishes from the subtropical upwelling region off NW-Africa characterised by their parasite fauna

    Get PDF
    Eastern boundary upwelling provides the conditions for high marine productivity in the Canary Current System off NW-Africa. Despite its considerable importance to fisheries, knowledge on this marine ecosystem is only limited. Here, parasites were used as indicators to gain insight into the host ecology and food web of two pelagic fish species, the commercially important species Trichiurus lepturus Linnaeus, 1758, and Nealotus tripes Johnson, 1865. Fish specimens of T. lepturus (n = 104) and N. tripes (n = 91), sampled from the Canary Current System off the Senegalese coast and Cape Verde Islands, were examined, collecting data on their biometrics, diet and parasitisation. In this study, the first parasitological data on N. tripes are presented. T. lepturus mainly preyed on small pelagic Crustacea and the diet of N. tripes was dominated by small mesopelagic Teleostei. Both host species were infested by mostly generalist parasites. The parasite fauna of T. lepturus consisted of at least nine different species belonging to six taxonomic groups, with a less diverse fauna of ectoparasites and cestodes in comparison to studies in other coastal ecosystems (Brazil Current and Kuriosho Current). The zoonotic nematode Anisakis pegreffii occurred in 23% of the samples and could pose a risk regarding food safety. The parasite fauna of N. tripes was composed of at least thirteen species from seven different taxonomic groups. Its most common parasites were digenean ovigerous metacercariae, larval cestodes and a monogenean species (Diclidophoridae). The observed patterns of parasitisation in both host species indicate their trophic relationships and are typical for mesopredators from the subtropical epi- and mesopelagic. The parasite fauna, containing few dominant species with a high abundance, represents the typical species composition of an eastern boundary upwelling ecosystem

    Lighten up the dark: metazoan parasites as indicators for the ecology of Antarctic crocodile icefish (Channichthyidae) from the north-west Antarctic Peninsula

    No full text
    Due to its remote and isolated location, Antarctica is home to a unique diversity of species. The harsh conditions have shaped a primarily highly adapted endemic fauna. This includes the notothenioid family Channichthyidae. Their exceptional physiological adaptations have made this family of icefish the focus of many studies. However, studies on their ecology, especially on their parasite fauna, are comparatively rare. Parasites, directly linked to the food chain, can function as biological indicators and provide valuable information on host ecology (e.g., trophic interactions) even in remote habitats with limited accessibility, such as the Southern Ocean. In the present study, channichthyid fish (Champsocephalus gunnari: n = 25, Chaenodraco wilsoni: n = 33, Neopagetopsis ionah: n = 3, Pagetopsis macropterus: n = 4, Pseudochaenichthys georgianus: n = 15) were collected off South Shetland Island, Elephant Island, and the tip of the Antarctic Peninsula (CCAML statistical subarea 48.1). The parasite fauna consisted of 14 genera and 15 species, belonging to the six taxonomic groups including Digenea (four species), Nematoda (four), Cestoda (two), Acanthocephala (one), Hirudinea (three), and Copepoda (one). The stomach contents were less diverse with only Crustacea (Euphausiacea, Amphipoda) recovered from all examined fishes. Overall, 15 new parasite-host records could be established, and possibly a undescribed genotype or even species might exist among the nematodes

    Lighten up the dark : metazoan parasites as indicators for the ecology of Antarctic crocodile icefish (Channichthyidae) from the north-west Antarctic Peninsula

    No full text
    Due to its remote and isolated location, Antarctica is home to a unique diversity of species. The harsh conditions have shaped a primarily highly adapted endemic fauna. This includes the notothenioid family Channichthyidae. Their exceptional physiological adaptations have made this family of icefish the focus of many studies. However, studies on their ecology, especially on their parasite fauna, are comparatively rare. Parasites, directly linked to the food chain, can function as biological indicators and provide valuable information on host ecology (e.g., trophic interactions) even in remote habitats with limited accessibility, such as the Southern Ocean. In the present study, channichthyid fish (Champsocephalus gunnari: n = 25, Chaenodraco wilsoni: n = 33, Neopagetopsis ionah: n = 3, Pagetopsis macropterus: n = 4, Pseudochaenichthys georgianus: n = 15) were collected off South Shetland Island, Elephant Island, and the tip of the Antarctic Peninsula (CCAML statistical subarea 48.1). The parasite fauna consisted of 14 genera and 15 species, belonging to the six taxonomic groups including Digenea (four species), Nematoda (four), Cestoda (two), Acanthocephala (one), Hirudinea (three), and Copepoda (one). The stomach contents were less diverse with only Crustacea (Euphausiacea, Amphipoda) recovered from all examined fishes. Overall, 15 new parasite-host records could be established, and possibly a undescribed genotype or even species might exist among the nematodes
    corecore