20 research outputs found

    Theory of the n=2 levels in muonic deuterium

    Full text link
    The present knowledge of Lamb shift, fine- and hyperfine structure of the 2S\mathrm{2S} and 2P\mathrm{2P} states in muonic deuterium is reviewed in anticipation of the results of a first measurement of several 2S−2P\mathrm{2S-2P} transition frequencies in muonic deuterium (μd\mu\mathrm{d}). A term-by-term comparison of all available sources reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift, which are essential for a determination of the deuteron rms charge radius from μd\mu\mathrm{d}. Apparent discrepancies between different sources are resolved, in particular for the difficult two-photon exchange contributions. Problematic single-sourced terms are identified which require independent recalculation.Comment: 26 pages, add missing feynman diagrams (Fig. 3), renumber items (Tab. IV), correct a sum (column 5, Tab. IV

    Improved X-ray detection and particle identification with avalanche photodiodes

    Full text link
    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work we report on a fitting technique used to account for different detector responses resulting from photo absorption in the various APD layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2, and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g. to distinguish between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure

    Measuring the α-particle charge radius with muonic helium-4 ions

    No full text
    The energy levels of hydrogen-like atomic systems can be calculated with great precision. Starting from their quantum mechanical solution, they have been refined over the years to include the electron spin, the relativistic and quantum field effects, and tiny energy shifts related to the complex structure of the nucleus. These energy shifts caused by the nuclear structure are vastly magnified in hydrogen-like systems formed by a negative muon and a nucleus, so spectroscopy of these muonic ions can be used to investigate the nuclear structure with high precision. Here we present the measurement of two 2S–2P transitions in the muonic helium-4 ion that yields a precise determination of the root-mean-square charge radius of the α particle of 1.67824(83) femtometres. This determination from atomic spectroscopy is in excellent agreement with the value from electron scattering1, but a factor of 4.8 more precise, providing a benchmark for few-nucleon theories, lattice quantum chromodynamics and electron scattering. This agreement also constrains several beyond-standard-model theories proposed to explain the proton-radius puzzle2,3,4,5, in line with recent determinations of the proton charge radius6,7,8,9, and establishes spectroscopy of light muonic atoms and ions as a precise tool for studies of nuclear properties.ISSN:0028-0836ISSN:1476-468

    Tests of fundamental physics using ramsey-comb spectroscopy on the hydrogen molecule

    No full text
    High-precision spectroscopy on simple systems such as atomic hydrogen has reached an unprecedented level of accuracy in recent years [1]. Experimentally determined energy levels are used to test bound-state quantum electrodynamics (QED). However, theoretical values for the energy levels were limited by the uncertainty of experimentally determined parameters such as the proton charge radius (rp). In 2010, the CREMA collaboration performed a spectroscopic measurement on muonic hydrogen. From this, rp was extracted with a ten times higher accuracy but also showed a 5σ discrepancy to the CODATA-2010 value [2]. This so-called proton radius puzzle remains unsolved. A possible solution to this problem can be obtained from measurements in other systems

    Muonic atom spectroscopy with microgram target material

    No full text
    Muonic atom spectroscopy–the measurement of the x rays emitted during the formation process of a muonic atom–has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom. We have developed a new method relying on repeated transfer reactions taking place inside a 100 bar hydrogen gas cell with an admixture of 0.25% deuterium that allows us to drastically reduce the amount of target material needed while still offering an adequate efficiency. Detailed simulations of the transfer reactions match the measured data, suggesting good understanding of the processes taking place inside the gas mixture. As a proof of principle we demonstrate the method with a measurement of the 2p-1s muonic x rays from a 5 μ g gold target
    corecore