82 research outputs found

    Oil hydrocarbon degradation by Caspian Sea microbial communities

    Get PDF
    The Caspian Sea, which is the largest landlocked body of water on the planet, receives substantial annual hydrocarbon input from anthropogenic sources (e.g., industry, agriculture, oil exploration, and extraction) and natural sources (e.g., mud volcanoes and oil seeps). The Caspian Sea also receives substantial amounts of runoff from agricultural and municipal sources, containing nutrients that have caused eutrophication and subsequent hypoxia in the deep, cold waters. The effect of decreasing oxygen saturation and cold temperatures on oil hydrocarbon biodegradation by a microbial community is not well characterized. The purpose of this study was to investigate the effect of oxic and anoxic conditions on oil hydrocarbon biodegradation at cold temperatures by microbial communities derived from the Caspian Sea. Water samples were collected from the Caspian Sea for study in experimental microcosms. Major taxonomic orders observed in the ambient water samples included Flavobacteriales, Actinomycetales, and Oceanospirillales. Microcosms were inoculated with microbial communities from the deepest waters and amended with oil hydrocarbons for 17 days. Hydrocarbon degradation and shifts in microbial community structure were measured. Surprisingly, oil hydrocarbon biodegradation under anoxic conditions exceeded that under oxic conditions; this was particularly evident in the degradation of aromatic hydrocarbons. Important microbial taxa associated with the anoxic microcosms included known oil degraders such as Oceanospirillaceae. This study provides knowledge about the ambient community structure of the Caspian Sea, which serves as an important reference point for future studies. Furthermore, this may be the first report in which anaerobic biodegradation of oil hydrocarbons exceeds aerobic biodegradation

    Measurement of Spin-orbit Misalignment and Nodal Precession for the Planet around Pre-main-sequence Star PTFO 8-8695 from Gravity Darkening

    Get PDF
    PTFO 8-8695b represents the first transiting exoplanet candidate orbiting a pre-main-sequence star (van Eyken et al. 2012, ApJ, 755, 42). We find that the unusual lightcurve shapes of PTFO 8-8695 can be explained by transits of a planet across an oblate, gravity-darkened stellar disk. We develop a theoretical framework for understanding precession of a planetary orbit's ascending node for the case when the stellar rotational angular momentum and the planetary orbital angular momentum are comparable in magnitude. We then implement those ideas to simultaneously and self-consistently fit two separate lightcurves observed in 2009 December and 2010 December. Our two self-consistent fits yield Mp = 3.0 M_Jup and Mp = 3.6 M_Jup for assumed stellar masses of M* = 0.34 M_☉ and M* = 0.44 M_☉ respectively. The two fits have precession periods of 293 days and 581 days. These mass determinations (consistent with previous upper limits) along with the strength of the gravity-darkened precessing model together validate PTFO 8-8695b as just the second hot Jupiter known to orbit an M-dwarf. Our fits show a high degree of spin-orbit misalignment in the PTFO 8-8695 system: 69° ± 2° or 73°.1 ± 0°.5, in the two cases. The large misalignment is consistent with the hypothesis that planets become hot Jupiters with random orbital plane alignments early in a system's lifetime. We predict that as a result of the highly misaligned, precessing system, the transits should disappear for months at a time over the course of the system's precession period. The precessing, gravity-darkened model also predicts other observable effects: changing orbit inclination that could be detected by radial velocity observations, changing stellar inclination that would manifest as varying vsin i, changing projected spin-orbit alignment that could be seen by the Rossiter–McLaughlin effect, changing transit shapes over the course of the precession, and differing lightcurves as a function of wavelength. Our measured planet radii of 1.64 R_Jup and 1.68 R_Jup in each case are consistent with a young, hydrogen-dominated planet that results from a "hot-start" formation mechanism

    Adaptation of the Biolog Phenotype MicroArrayTM Technology to Profile the Obligate Anaerobe Geobacter metallireducens

    Full text link
    The Biolog OmniLog? Phenotype MicroArray (PM) plate technology was successfully adapted to generate a select phenotypic profile of the strict anaerobe Geobacter metallireducens (G.m.). The profile generated for G.m. provides insight into the chemical sensitivity of the organism as well as some of its metabolic capabilities when grown with a basal medium containing acetate and Fe(III). The PM technology was developed for aerobic organisms. The reduction of a tetrazolium dye by the test organism represents metabolic activity on the array which is detected and measured by the OmniLog(R) system. We have previously adapted the technology for the anaerobic sulfate reducing bacterium Desulfovibrio vulgaris. In this work, we have taken the technology a step further by adapting it for the iron reducing obligate anaerobe Geobacter metallireducens. In an osmotic stress microarray it was determined that the organism has higher sensitivity to impermeable solutes 3-6percent KCl and 2-5percent NaNO3 that result in osmotic stress by osmosis to the cell than to permeable non-ionic solutes represented by 5-20percent ethylene glycol and 2-3percent urea. The osmotic stress microarray also includes an array of osmoprotectants and precursor molecules that were screened to identify substrates that would provide osmotic protection to NaCl stress. None of the substrates tested conferred resistance to elevated concentrations of salt. Verification studies in which G.m. was grown in defined medium amended with 100mM NaCl (MIC) and the common osmoprotectants betaine, glycine and proline supported the PM findings. Further verification was done by analysis of transcriptomic profiles of G.m. grown under 100mM NaCl stress that revealed up-regulation of genes related to degradation rather than accumulation of the above-mentioned osmoprotectants. The phenotypic profile, supported by additional analysis indicates that the accumulation of these osmoprotectants as a response to salt stress does not occur in G.m. and response to stress must occur by other mechanisms. The Phenotype MicroArray technology can be reliably used as a rapid screening tool for characterization in anaerobic microbial ecology

    Comparison of Thaumarchaeotal populations from four deep sea basins.

    Get PDF
    The nitrogen cycle in the marine environment is strongly affected by ammonia-oxidizing Thaumarchaeota. In some marine settings, Thaumarchaeotes can comprise a large percentage of the prokaryotic population. To better understand the biogeographic patterns of Thaumarchaeotes, we sought to investigate differences in their abundance and phylogenetic diversity between geographically distinct basins. Samples were collected from four marine basins (The Caspian Sea, the Great Australian Bight, and the Central and Eastern Mediterranean). The concentration of bacterial and archaeal 16S rRNA genes and archaeal amoA genes were assessed using qPCR. Minimum entropy decomposition was used to elucidate the fine-scale diversity of Thaumarchaeotes. We demonstrated that there were significant differences in the abundance and diversity of Thaumarchaeotes between these four basins. The diversity of Thaumarchaeotal oligotypes differed between basins with many oligotypes only present in one of the four basins, which suggests that their distribution showed biogeographic patterning. There were also significant differences in Thaumarchaeotal community structure between these basins. This would suggest that geographically distant, yet geochemically similar basins may house distinct Thaumarchaeaotal populations. These findings suggest that Thaumarchaeota are very diverse and that biogeography in part contributes in determining the diversity and distribution of Thaumarchaeotes

    Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading

    Get PDF
    Nitrogen fixation, the biological conversion of N_2 to NH_3, is critical to alleviating nitrogen limitation in many marine ecosystems. To date, few measurements exist of N_2 fixation in deep‐sea sediments. Here, we conducted > 400 bottle incubations with sediments from methane seeps, whale falls and background sites off the western coast of the United States from 600 to 2893 m water depth to investigate the potential rates, spatial distribution and biological mediators of benthic N_2 fixation. We found that N2 fixation was widespread, yet heterogeneously distributed with sediment depth at all sites. In some locations, rates exceeded previous measurements by > 10×, and provided up to 30% of the community anabolic growth requirement for nitrogen. Diazotrophic activity appeared to be inhibited by pore water ammonium: N_2 fixation was only observed if incubation ammonium concentrations were ≀ 25 ÎŒM, and experimental additions of ammonium reduced diazotrophy. In seep sediments, N_2 fixation was dependent on CH_4 and coincident with sulphate reduction, consistent with previous work showing diazotrophy by microorganisms mediating sulphate‐coupled methane oxidation. However, the pattern of diazotrophy was different in whale‐fall and associated reference sediments, where it was largely unaffected by CH_4, suggesting catabolically different diazotrophs at these sites

    Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2

    Get PDF
    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated Klebsiella sp. strain BRL6-2 on minimal media with alkali lignin as the sole carbon source. This organism was isolated anaerobically from tropical forest soils collected from the Bisley watershed at the Ridge site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are characterized by cycles of iron oxidation and reduction. Genome sequencing was targeted because of its ability to grow on lignin anaerobically and lignocellulolytic activity via in vitro enzyme assays. The genome of Klebsiella sp. strain BRL6-2 is 5.80 Mbp with no detected plasmids, and includes a relatively small arsenal of genes encoding lignocellulolytic carbohydrate active enzymes. The genome revealed four putative peroxidases including glutathione and DyP-type peroxidases, and a complete protocatechuate pathway encoded in a single gene cluster. Physiological studies revealed Klebsiella sp. strain BRL6-2 to be relatively stress tolerant to high ionic strength conditions. It grows in increasing concentrations of ionic liquid (1-ethyl-3-methyl-imidazolium acetate) up to 73.44 mM and NaCl up to 1.5 M
    • 

    corecore