879 research outputs found

    Phylogenetic relationships of the Wolbachia of nematodes and arthropods

    Get PDF
    Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes

    Geodynamic setting and origin of the Oman/UAE ophiolite

    Get PDF
    The ~500km-long mid-Cretaceous Semail nappe of the Sultanate of Oman and UAE (henceforth referred to as the Oman ophiolite) is the largest and best-preserved ophiolite complex known. It is of particular importance because it is generally believed to have an internal structure and composition closely comparable to that of crust formed at the present-day East Pacific Rise (EPR), making it our only known on-land analogue for ocean lithosphere formed at a fast spreading rate. On the basis of this assumption Oman has long played a pivotal role in guiding our conceptual understanding of fast-spreading ridge processes, as modern fast-spread ocean crust is largely inaccessible

    Boninite and Harzburgite from Leg 125 (Bonin-Mariana Forearc): A Case Study of Magma Genesis during the Initial Stages of Subduction

    No full text
    Holes drilled into the volcanic and ultrabasic basement of the Izu-Ogasawara and Mariana forearc terranes during Leg 125 provide data on some of the earliest lithosphere created after the start of Eocene subduction in the Western Pacific. The volcanic basement contains three boninite series and one tholeiite series. (1) Eocene low-Ca boninite and low-Ca bronzite andesite pillow lavas and dikes dominate the lowermost part of the deep crustal section through the outer-arc high at Site 786. (2) Eocene intermediate-Ca boninite and its fractionation products (bronzite andesite, andesite, dacite, and rhyolite) make up the main part of the boninitic edifice at Site 786. (3) Early Oligocene intermediate-Ca to high-Ca boninite sills or dikes intrude the edifice and perhaps feed an uppermost breccia unit at Site 786. (4) Eocene or Early Oligocene tholeiitic andesite, dacite, and rhyolite form the uppermost part of the outer-arc high at Site 782. All four groups can be explained by remelting above a subduction zone of oceanic mantle lithosphere that has been depleted by its previous episode of partial melting at an ocean ridge. We estimate that the average boninite source had lost 10-15 wt% of melt at the ridge before undergoing further melting (5-10%) shortly after subduction started. The composition of the harzburgite (<2% clinopyroxene, Fo content of about 92%) indicates that it underwent a total of about 25% melting with respect to a fertile MORB mantle. The low concentration of Nb in the boninite indicates that the oceanic lithosphere prior to subduction was not enriched by any asthenospheric (OIB) component. The subduction component is characterized by (1) high Zr and Hf contents relative to Sm, Ti, Y, and middle-heavy REE, (2) light REE-enrichment, (3) low contents of Nb and Ta relative to Th, Rb, or La, (4) high contents of Na and Al, and (5) Pb isotopes on the Northern Hemisphere Reference Line. This component is unlike any subduction component from active arc volcanoes in the Izu-Mariana region or elsewhere. Modeling suggests that these characteristics fit a trondhjemitic melt from slab fusion in amphibolite facies. The resulting metasomatized mantle may have contained about 0.15 wt% water. The overall melting regime is constrained by experimental data to shallow depths and high temperatures (1250°C and 1.5 kb for an average boninite) of boninite segregation. We thus envisage that boninites were generated by decompression melting of a diapir of metasomatized residual MORB mantle leaving the harzburgites as the uppermost, most depleted residue from this second stage of melting. Thermal constraints require that both subducted lithosphere and overlying oceanic lithosphere of the mantle wedge be very young at the time of boninite genesis. This conclusion is consistent with models in which an active transform fault offsetting two ridge axes is placed under compression or transpression following the Eocene plate reorganization in the Pacific. Comparison between Leg 125 boninites and boninites and related rocks elsewhere in the Western Pacific highlights large regional differences in petrogenesis in terms of mantle mineralogy, degree of partial melting, composition of subduction components, and the nature of pre-subduction lithosphere. It is likely that, on a regional scale, the initiation of subduction involved subducted crust and lithospheric mantle wedge of a range of ages and compositions, as might be expected in this type of tectonic setting

    How to Create New Subduction Zones: A Global Perspective

    Get PDF
    The association of deep-sea trenches—steeply angled, planar zones where earthquakes occur deep into Earth’s interior—and chains, or arcs, of active, explosive volcanoes had been recognized for 90 years prior to the development of plate tectonic theory in the 1960s. Oceanic lithosphere is created at mid-ocean ridge spreading centers and recycled into the mantle at subduction zones, where down-going lithospheric plates dynamically sustain the deep-sea trenches. Study of subduction zone initiation is a challenge because evidence of the processes involved is typically destroyed or buried by later tectonic and crust-forming events. In 2014 and 2017, the International Ocean Discovery Program (IODP) specifically targeted these processes with three back-to-back expeditions to the archetypal Izu-Bonin-Mariana (IBM) intra-oceanic arcs and one expedition to the Tonga-Kermadec (TK) system. Both subduction systems were initiated ~52 million years ago, coincident with a proposed major change of Pacific plate motion. These expeditions explored the tectonism preceding and accompanying subduction initiation and the characteristics of the earliest crust-forming magmatism. Lack of compressive uplift in the overriding plate combined with voluminous basaltic seafloor magmatism in an extensional environment indicates a large component of spontaneous subduction initiation was involved for the IBM. Conversely, a complex range of far-field uplift and depression accompanied the birth of the TK system, indicative of a more distal forcing of subduction initiation. Future scientific ocean drilling is needed to target the three-dimensional aspects of these processes at new converging margins

    References html#ref-list-1

    Get PDF
    Deploying chemosensor arrays in close proximity to stationary phases imposes stimulusdependent spatio-temporal dynamics on their response and leads to improvements in complex odour discrimination. These spatio-temporal dynamics need to be taken into account explicitly when considering the detection performance of this new odour sensing technology, termed an artificial olfactory mucosa. For this purpose, we develop here a new measure of spatio-temporal information that combined with an analytical model of the artificial mucosa, chemosensor and noise dynamics completely characterizes the discrimination capability of the system. This spatio-temporal information measure allows us to quantify the contribution of both space and time to discrimination performance and may be used as part of optimization studies or calculated directly from an artificial mucosa output. Our formal analysis shows that exploiting both space and time in the mucosa response always outperforms the use of space alone and is further demonstrated by comparing the spatial versus spatio-temporal information content of mucosa experimental data. Together, the combination of the spatio-temporal information measure and the analytical model can be applied to extract the general principles of the artificial mucosa design as well as to optimize the physical and operating parameters that determine discrimination performance

    Careón ophiolite, NW Spain: Suprasubduction zone setting for the youngest Rheic Ocean fl oor

    Get PDF
    The Careón ophiolite (Galicia, NW Iberian Massif) shows lithological and geochemical features suggestive of an origin in a suprasubduction zone setting. As with other Devonian ophiolites in the European Variscan belt, it was generated within a contracting Rheic Ocean. This setting and the general absence of large Silurian-Devonian volcanic arcs on both of the Rheic Ocean margins strongly suggest that this ocean was closed by intraoceanic subduction directed to the north. This subduction removed the older normal (N) mid-oceanic-ridge basalt (MORB) oceanic lithosphere and gave rise to a limited volume of new suprasubduction zone oceanic lithosphere. The Careón ophiolite is a key element in understanding the evolution of the Rheic Ocean, which was the main oceanic domain that closed during the Paleozoic convergence of Gondwana and Laurussia, preceding the assembly of Pange

    Sr-Nd-Pb-Hf isotope results from ODP Leg 187: Evidence for mantle dynamics of the Australian-Antarctic Discordance and origin of the Indian MORB source

    Get PDF
    New high precision PIMMS Hf and Pb isotope data for 14–28 Ma basalts recovered during ODP Leg 187 are compared with zero-age dredge samples from the Australian-Antarctic Discordance (AAD). These new data show that combined Nd-Hf isotope systematics can be used as an effective discriminant between Indian and Pacific MORB source mantle domains. In particular, Indian mantle is displaced to lower εNd and higher εHf ratios compared to Pacific mantle. As with Pb isotope plots, there is almost no overlap between the two mantle types in Nd-Hf isotope space. On the basis of our new Nd-Hf isotope data, we demonstrate that Pacific MORB-source mantle was present near the eastern margin of the AAD from as early as 28 Ma, its boundary with Indian MORB-source mantle coinciding with the eastern edge of a basin-wide arcuate depth anomaly that is centered on the AAD. This observation rules out models requiring rapid migration of Pacific MORB mantle into the Indian Ocean basin since separation of Australia from Antarctica. Although temporal variations in isotopic composition can be discerned relative to the fracture zone boundary of the modern AAD at 127°E, the distribution of different compositional groups appears to have remained much the same relative to the position of the residual depth anomaly for the past 30 m.y. Thus significant lateral flow of mantle along the ridge axis toward the interface appears unlikely. Instead, the dynamics that maintain both the residual depth anomaly and the isotopic boundary between Indian and Pacific mantle are due to eastward migration of the Australian and Antarctic plates over a stagnated, but slowly upwelling, slab oriented roughly orthogonal to the ridge axis. Temporal and spatial variations in the compositions of Indian MORB basalts within the AAD can be explained by progressive displacement of shallower Indian MORB-source mantle by deeper mantle having a higher εHf composition ascending ahead of the upwelling slab. Models for the origin of the distinctive composition of the Indian MORB-source based on recycling of a heterogeneous enriched component that consist of ancient altered ocean crust plus<10% pelagic sediment are inconsistent with Nd-Hf isotope systematics. Instead, the data can be explained by a model in which Indian mantle includes a significant proportion of material that was processed in the mantle wedge above a subduction zone and was subsequently mixed back into unprocessed upper mantle

    Sussing merger trees: a proposed merger tree data format

    Get PDF
    We propose a common terminology for use in describing both temporal merger trees and spatial structure trees for dark-matter halos. We specify a unified data format in HDF5 and provide example I/O routines in C, FORTRAN and PYTHON

    Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components

    Get PDF
    A new ICP-MS database for glasses from the Mariana Trough, together with published and new ICP-MS data from the Mariana arc, provides the basis for geochemical mapping of the Mariana arc-basin system. The geochemical maps presented here are based on the graphic representation of spatial variations in geochemical proxies for the principal mantle and subduction components. The focus is on three elements with high and similar partition coefficients but different behavior in subduction systems, namely, Ba, Th, and Nb. Two elements with different partition coefficients, Ta and Yb, are used as normalizing factors. Ratio maps (Ta/Yb, Nb/Ta, Th/Ta, Ba/Ta, Ba/Th) provide the simplest petrogenetic insights, subduction zone addition maps based on deviations from a MORB array provide more quantitative insights, and component maps represent an attempt to isolate the different subduction components. The maps shown here indicate the presence of a variably depleted asthenosphere and three added components: a Nb-Th-Ba component, a Th-Ba deep-subduction component, and a Ba-only shallow-subduction component. The asthenosphere entering the system is enriched relative to N-MORB and appears to be focused at three sites within the Mariana Trough. The Nb-Th-Ba component is present mainly in the north of the arc (the Northern Seamount province and northern Central Island Province), the northern edge of the Mariana Trough, and two locations within the Southern Seamount Province. It has a distinctively high Nb/Ta ratio and a moderate enrichment in Th and Ba relative to Nb. Its composition and distribution indicate that it may not be part of the present subduction system but instead originates in mantle lithosphere previously enriched above the subduction zone by addition of small-degree, subduction-modified mantle melts. The Th-Ba component is present throughout the arc and, in minor amounts, in parts of the back-arc basin. The Ba-only component is mainly present in the central part of the arc and at the edges of the back-arc basin. Overall, the geochemical maps provide a new perspective on the geochemical processes that accompany the evolution of an arc basin system from prerifting lithospheric enrichment, through arc-rifting to arc volcanism and back-arc spreadin
    corecore