16 research outputs found

    Fe-Si biominerals in the Vilyuchinskie hot springs, Kamchatka Peninsula, Russia

    Get PDF
    The micromorphological structure of microbial mats (biomats) from the hot springs of the Vilyuchinskaya hydrothermal system, Kamchatka Peninsula, Russia, were investigated. The Vilyuchinskie hot springs had a discharge temperature of 55–56°C and Na-Ca-HCO3-type waters rich in silicic and boric acids. Water and biomats had high concentrations of Fe, Mn, Sr, and As. Enumeration of total bacterial abundance (TBA) demonstrated a low density of bacterial populations. However, the fractions of metabolically active bacteria and respiring iron-oxidizing bacteria in the hot-spring water were high, comprising 68 and 21% of TBA, respectively. Scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM-EDX) showed that unicellular rod-shaped bacteria about 5-μm long predominated in the brown biomats. The mineral capsules of these bacteria contained large amounts of Fe and Si. Extracellular and intracellular particles were observed by transmission electron microscopy. Fe-oxidizing bacteria were isolated from the biomats on agar plates with selective medium. Therefore, it can be concluded that microorganisms inhabiting the biomats of the Vilyuchinskie hot springs are essential for the deposition of Fe-minerals at neutral pH. [Int Microbiol 2004; 7(3):193–198

    05 Belkova F-RG.qxp

    No full text
    Summary. The micromorphological structure of microbial mats (biomats) from the hot springs of the Vilyuchinskaya hydrothermal system, Kamchatka Peninsula, Russia, were investigated. The Vilyuchinskie hot springs had a discharge temperature of 55-56°C and Na-Ca-HCO 3 -type waters rich in silicic and boric acids. Water and biomats had high concentrations of Fe, Mn, Sr, and As. Enumeration of total bacterial abundance (TBA) demonstrated a low density of bacterial populations. However, the fractions of metabolically active bacteria and respiring iron-oxidizing bacteria in the hot-spring water were high, comprising 68 and 21% of TBA, respectively. Scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM-EDX) showed that unicellular rod-shaped bacteria about 5-µm long predominated in the brown biomats. The mineral capsules of these bacteria contained large amounts of Fe and Si. Extracellular and intracellular particles were observed by transmission electron microscopy. Fe-oxidizing bacteria were isolated from the biomats on agar plates with selective medium. Therefore, it can be concluded that microorganisms inhabiting the biomats of the Vilyuchinskie hot springs are essential for the deposition of Fe-minerals at neutral pH. [Int Microbiol 2004; 7(3):193-198

    Experience in Engineers Training on Multiple Integrals in the Nomotex DLS

    No full text
    The paper discusses a new approach to teaching the discipline “Multiple and curvilinear integrals, series” for engineers, using a new digital information and educational environment “NOMOTEX”, developed at the Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University. A new methodology for conducting lectures and practical classes for the Multiple Integrals course using Nomotex DLS is presented. The article analysed to the experience of training engineers at the Bauman Moscow State Technical University course on Multiple Integrals, including the advantages of learning using interactive computer visualization of mathematical concepts

    Rational Design of Albumin Theranostic Conjugates for Gold Nanoparticles Anticancer Drugs: Where the Seed Meets the Soil?

    No full text
    Multifunctional gold nanoparticles (AuNPs) may serve as a scaffold to integrate diagnostic and therapeutic functions into one theranostic system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. Herein, albumin-AuNP theranostic agents have been obtained by conjugation of an anticancer nucleotide trifluorothymidine (TFT) or a boron-neutron capture therapy drug undecahydro-closo-dodecaborate (B12H12) to bimodal human serum albumin (HSA) followed by reacting of the albumin conjugates with AuNPs. In vitro studies have revealed a stronger cytotoxicity by the AuNPs decorated with the TFT-tagged bimodal HSA than by the boronated albumin conjugates. Despite long circulation time, lack of the significant accumulation in the tumor was observed for the AuNP theranostic conjugates. Our unique labelling strategy allows for monitoring of spatial distribution of the AuNPs theranostic in vivo in real time with high sensitivity, thus reducing the number of animals required for testing and optimizing new nanosystems as chemotherapeutic agents and boron-neutron capture therapy drug candidates

    Rational Design of Albumin Theranostic Conjugates for Gold Nanoparticles Anticancer Drugs: Where the Seed Meets the Soil?

    No full text
    Multifunctional gold nanoparticles (AuNPs) may serve as a scaffold to integrate diagnostic and therapeutic functions into one theranostic system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. Herein, albumin-AuNP theranostic agents have been obtained by conjugation of an anticancer nucleotide trifluorothymidine (TFT) or a boron-neutron capture therapy drug undecahydro-closo-dodecaborate (B12H12) to bimodal human serum albumin (HSA) followed by reacting of the albumin conjugates with AuNPs. In vitro studies have revealed a stronger cytotoxicity by the AuNPs decorated with the TFT-tagged bimodal HSA than by the boronated albumin conjugates. Despite long circulation time, lack of the significant accumulation in the tumor was observed for the AuNP theranostic conjugates. Our unique labelling strategy allows for monitoring of spatial distribution of the AuNPs theranostic in vivo in real time with high sensitivity, thus reducing the number of animals required for testing and optimizing new nanosystems as chemotherapeutic agents and boron-neutron capture therapy drug candidates

    Nanoscale isoindigo-carriers: self-assembly and tunable properties

    No full text
    Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic–lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1′-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate) was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials

    COVID-19-related mortality in kidney transplant and dialysis patients: Results of the ERACODA collaboration

    No full text
    Background. Patients on kidney replacement therapy comprise a vulnerable population and may be at increased risk of death from coronavirus disease 2019 (COVID-19). Currently, only limited data are available on outcomes in this patient population. Methods. We set up the ERACODA (European Renal Association COVID-19 Database) database, which is specifically designed to prospectively collect detailed data on kidney transplant and dialysis patients with COVID-19. For this analysis, patients were included who presented between 1 February and 1 May 2020 and had complete information available on the primary outcome parameter, 28-day mortality. Results. Of the 1073 patients enrolled, 305 (28%) were kidney transplant and 768 (72%) dialysis patients with a mean age of 60 6 13 and 67 6 14 years, respectively. The 28-day probability of death was 21.3% [95% confidence interval (95% CI) 14.3\u201330.2%] in kidney transplant and 25.0% (95% CI 20.2\u201330.0%) in dialysis patients. Mortality was primarily associated with advanced age in kidney transplant patients, and with age and frailty in dialysis patients. After adjusting for sex, age and frailty, in-hospital mortality did not significantly differ between transplant and dialysis patients [hazard ratio (HR) 0.81, 95% CI 0.59\u20131.10, P \ubc 0.18]. In the subset of dialysis patients who were a candidate for transplantation (n \ubc 148), 8 patients died within 28 days, as compared with 7 deaths in 23 patients who underwent a kidney transplantation <1 year before presentation (HR adjusted for sex, age and frailty 0.20, 95% CI 0.07\u20130.56, P < 0.01). Conclusions. The 28-day case-fatality rate is high in patients on kidney replacement therapy with COVID-19 and is primarily driven by the risk factors age and frailty. Furthermore, in the first year after kidney transplantation, patients may be at increased risk of COVID-19-related mortality as compared with dialysis patients on the waiting list for transplantation. This information is important in guiding clinical decision-making, and for informing the public and healthcare authorities on the COVID-19-related mortality risk in kidney transplant and dialysis patients
    corecore