6 research outputs found

    T-helper cells flexibility: the possibility of reprogramming T cells fate

    Get PDF
    Various disciplines cooperate to find novel approaches to cure impaired body functions by repairing, replacing, or regenerating cells, tissues, or organs. The possibility that a stable differentiated cell can reprogram itself opens the door to new therapeutic strategies against a multitude of diseases caused by the loss or dysfunction of essential, irreparable, and specific cells. One approach to cell therapy is to induce reprogramming of adult cells into other functionally active cells. Understanding the factors that cause or contribute to T cell plasticity is not only of clinical importance but also expands the knowledge of the factors that induce cells to differentiate and improves the understanding of normal developmental biology. The present review focuses on the advances in the conversion of peripheral CD4+ T cells, the conditions of their reprogramming, and the methods proposed to control such cell differentiation

    The Regulatory-T-Cell Memory Phenotype: What We Know

    No full text
    In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions

    The Regulatory-T-Cell Memory Phenotype: What We Know

    No full text
    In immunology, the discovery of regulatory T (Treg) cells was a major breakthrough. Treg cells play a key role in pregnancy maintenance, in the prevention of autoimmune responses, and in the control of all immune responses, including responses to self cells, cancer, infection, and a transplant. It is currently unclear whether Treg cells are capable of long-term memory of an encounter with an antigen. Although the term “immunological memory” usually means an enhanced ability to protect the body from reinfection, the memory of the suppressive activity of Treg cells helps to avoid the state of generalized immunosuppression that may result from the second activation of the immune system. In this review, we would like to discuss the concept of regulatory memory and in which tissues memory Treg cells can perform their functions

    Th17 Cells, Glucocorticoid Resistance, and Depression

    No full text
    Depression is a severe mental disorder that disrupts mood and social behavior and is one of the most common neuropsychological symptoms of other somatic diseases. During the study of the disease, a number of theories were put forward (monoamine, inflammatory, vascular theories, etc.), but none of those theories fully explain the pathogenesis of the disease. Steroid resistance is a characteristic feature of depression and can affect not only brain cells but also immune cells. T-helper cells 17 type (Th17) are known for their resistance to the inhibitory effects of glucocorticoids. Unlike the inhibitory effect on other subpopulations of T-helper cells, glucocorticoids can enhance the differentiation of Th17 lymphocytes, their migration to the inflammation, and the production of IL-17A, IL-21, and IL-23 in GC-resistant disease. According to the latest data, in depression, especially the treatment-resistant type, the number of Th17 cells in the blood and the production of IL-17A is increased, which correlates with the severity of the disease. However, there is still a significant gap in knowledge regarding the exact mechanisms by which Th17 cells can influence neuroinflammation in depression. In this review, we discuss the mutual effect of glucocorticoid resistance and Th17 lymphocytes on the pathogenesis of depression

    Dendritic Cells Transfected with MHC Antigenic Determinants of CBA Mice Induce Antigen-Specific Tolerance in C57Bl/6 Mice

    No full text
    Background. Nonspecific immunosuppressive therapy for graft rejection and graft-versus-host disease (GVHD) is often accompanied by severe side effects such as opportunistic infections and cancers. Several approaches have been developed to suppress transplantation reactions using tolerogenic cells, including induction of FoxP3+ Tregs with antigen-loaded dendritic cells (DCs) and induction of CD4+IL-10+ cells with interleukin IL-10-producing DCs. Here, we assessed the effectiveness of both approaches in the suppression of graft rejection and GVHD. Methods. IL-10-producing DCs were generated by the transfection of DCs with DNA constructs encoding mouse IL-10. Antigen-loaded DCs from C57BL/6 mice were generated by transfection with DNA constructs encoding antigenic determinants from the H2 locus of CBA mice which differ from the homologous antigenic determinants of C57BL/6 mice. Results. We found that both IL-10-producing DCs and antigen-loaded immature DCs could suppress graft rejection and GVHD but through distinct nonspecific and antigen-specific mechanisms, respectively. Discussion. We provide data that the novel approach for DCs antigen loading using DNA constructs encoding distinct homologous determinants derived from major histocompatibility complex genes is effective in antigen-specific suppression of transplantation reactions. Such an approach eliminates the necessity of donor material use and may be useful in immunosuppressive therapy side effects prevention
    corecore