431 research outputs found
The Making of Citizenship
Nach der UnabhĂ€ngigkeit Tansanias und Ugandas verhandelten lokale Akteure StaatsbĂŒrgerschaft neu. Als AuĂenseiter mussten die asiatischen Minderheiten Ostafrikas ihre Rolle in einer neuen Welt finden. Doch wĂ€hrend der 1960er verengten sich die sozialen und ökonomischen RĂ€ume fĂŒr sie, was letztlich in der Ausweisung der Asiaten aus Uganda gipfelte
The TAM-TB AssayâA Promising TB Immune-Diagnostic Test With a Potential for Treatment Monitoring
Tuberculosis (TB) epidemiology is changing in Western and Central Europe due to the rise in immigration and refugees fleeing high-TB-burden areas of war and devastation. The change in local demography and the lack of sensitive and specific TB diagnostic and monitoring tools, especially for cases of childhood TB, leads to either missed cases or over-treatment of this group. Here we present a promising new diagnostic approach, the T cell activation marker (TAM)-TB assay, and its performance in a case of extra-pulmonary TB occurring in a 16 year old refugee from Afghanistan. This assay is based on the characterization of 3 activation markers (CD38, HLA-DR, and Ki67) and one maturation marker (CD27) on M. tuberculosis-specific CD4 T cells. It was performed at time-points TO (10 days), T1 (1 month), T2 (6 months), and T3 (12 months) post-treatment initiation. All markers were able to detect active tuberculosis (aTB) within this patient at T0 and reverted to a healthy/LTBI phenotype at the end of treatment. Tantalizingly, there was a clear trend toward the healthy/LTBI phenotype for the markers at T1 and T2, indicating a potential role in monitoring anti-TB treatment in the future. This assay may therefore contribute to improved TB diagnostic algorithms and TB treatment monitoring, potentially allowing for individualization of TB treatment duration in the future
Neurometabolic changes in neonates with congenital heart defects and their relation to neurodevelopmental outcome.
BACKGROUND
Altered neurometabolite ratios in neonates undergoing cardiac surgery for congenital heart defects (CHD) may serve as a biomarker for altered brain development and neurodevelopment (ND).
METHODS
We analyzed single voxel 3T PRESS H1-MRS data, acquired unilaterally in the left basal ganglia and white matter of 88 CHD neonates before and/or after neonatal cardiac surgery and 30 healthy controls. Metabolite ratios to Creatine (Cr) included glutamate (Glu/Cr), myo-Inositol (mI/Cr), glutamate and glutamine (Glx/Cr), and lactate (Lac/Cr). In addition, the developmental marker N-acetylaspartate to choline (NAA/Cho) was evaluated. All children underwent ND outcome testing using the Bayley Scales of Infant and Toddler Development Third Edition (BSID-III) at 1 year of age.
RESULTS
White matter NAA/Cho ratios were lower in CHD neonates compared to healthy controls (group beta estimate: -0.26, std. error 0.07, 95% CI: -0.40 - 0.13, p value <0.001, FDR corrected p valueâ=â0.010). We found no correlation between pre- or postoperative white matter NAA/Cho with ND outcome while controlling for socioeconomic status and CHD diagnosis.
CONCLUSION
Reduced white matter NAA/Cho in CHD neonates undergoing cardiac surgery may reflect a delay in brain maturation. Further long-term MRS studies are needed to improve our understanding of the clinical impact of altered metabolites on brain development and outcome.
IMPACT
NAA/Cho was reduced in the white matter, but not the gray matter of CHD neonates compared to healthy controls. No correlation to the 1-year neurodevelopmental outcome (Bayley-III) was found. While the rapid change of NAA/Cho with age might make it a sensitive marker for a delay in brain maturation, the relationship to neurodevelopmental outcome requires further investigation
Neurometabolic changes in neonates with congenital heart defects and their relation to neurodevelopmental outcome
BACKGROUND
Altered neurometabolite ratios in neonates undergoing cardiac surgery for congenital heart defects (CHD) may serve as a biomarker for altered brain development and neurodevelopment (ND).
METHODS
We analyzed single voxel 3T PRESS H-MRS data, acquired unilaterally in the left basal ganglia and white matter of 88 CHD neonates before and/or after neonatal cardiac surgery and 30 healthy controls. Metabolite ratios to Creatine (Cr) included glutamate (Glu/Cr), myo-Inositol (mI/Cr), glutamate and glutamine (Glx/Cr), and lactate (Lac/Cr). In addition, the developmental marker N-acetylaspartate to choline (NAA/Cho) was evaluated. All children underwent ND outcome testing using the Bayley Scales of Infant and Toddler Development Third Edition (BSID-III) at 1 year of age.
RESULTS
White matter NAA/Cho ratios were lower in CHD neonates compared to healthy controls (group beta estimate: -0.26, std. error 0.07, 95% CI: -0.40 - 0.13, p value <0.001, FDR corrected p valueâ=â0.010). We found no correlation between pre- or postoperative white matter NAA/Cho with ND outcome while controlling for socioeconomic status and CHD diagnosis.
CONCLUSION
Reduced white matter NAA/Cho in CHD neonates undergoing cardiac surgery may reflect a delay in brain maturation. Further long-term MRS studies are needed to improve our understanding of the clinical impact of altered metabolites on brain development and outcome.
IMPACT
NAA/Cho was reduced in the white matter, but not the gray matter of CHD neonates compared to healthy controls. No correlation to the 1-year neurodevelopmental outcome (Bayley-III) was found. While the rapid change of NAA/Cho with age might make it a sensitive marker for a delay in brain maturation, the relationship to neurodevelopmental outcome requires further investigation
Soil microbiome indicators can predict crop growth response to large-scale inoculation with arbuscular mycorrhizal fungi
Alternative solutions to mineral fertilizers and pesticides that reduce the environmental impact of agriculture are urgently needed. Arbuscular mycorrhizal fungi (AMF) can enhance plant nutrient uptake and reduce plant stress; yet, large-scale field inoculation trials with AMF are missing, and so far, results remain unpredictable. We conducted on-farm experiments in 54 fields in Switzerland and quantified the effects on maize growth. Growth response to AMF inoculation was highly variable, ranging from -12% to +40%. With few soil parameters and mainly soil microbiome indicators, we could successfully predict 86% of the variation in plant growth response to inoculation. The abundance of pathogenic fungi, rather than nutrient availability, best predicted (33%) AMF inoculation success. Our results indicate that soil microbiome indicators offer a sustainable biotechnological perspective to predict inoculation success at the beginning of the growing season. This predictability increases the profitability of microbiome engineering as a tool for sustainable agricultural management
Predicting soil fungal communities from chemical and physical properties
Introduction: Biogeography describes spatial patterns of diversity and explains why organisms occur in given conditions. While it is well established that the diversity of soil microbes is largely controlled by edaphic environmental variables, microbiome community prediction from soil properties has received less attention. In this study, we specifically investigated whether it is possible to predict the composition of soil fungal communities based on physicochemical soil data using multivariate ordination.
Materials and Methods: We sampled soil from 59 arable fields in Switzerland and assembled paired data of physicochemical soil properties as well as profiles of soil fungal communities. Fungal communities were characterized using long-read sequencing of the entire ribosomal internal transcribed spacer. We used redundancy analysis to combine the physical and chemical soil measurements with the fungal community data.
Results: We identified a reduced set of 10 soil properties that explained fungal community composition. Soil properties with the strongest impact on the fungal community included pH, potassium and sand content. Finally, we evaluated the model for its suitability for prediction using leave-one-out validation. The prediction of community composition was successful for most soils, and only 3/59 soils could not be well predicted (Pearson correlation coefficients between observed and predicted communities of <0.5). Further, we successfully validated our prediction approach with a publicly available data set. With both data sets, prediction was less successful for soils characterized by very unique properties or diverging fungal communities, while it was successful for soils with similar characteristics and microbiome.
Conclusions: Reliable prediction of microbial communities from chemical soil properties could bypass the complex and laborious sequencing-based generation of microbiota data, thereby making soil microbiome information available for agricultural purposes such as pathogen monitoring, field inoculation or yield projections
Hetero-epitaxial EuO Interfaces Studied by Analytic Electron Microscopy
With nearly complete spin polarization, the ferromagnetic semiconductor
europium monoxide could enable next-generation spintronic devices by providing
efficient ohmic spin injection into silicon. Spin injection is greatly affected
by the quality of the interface between the injector and silicon. Here, we use
atomic-resolution scanning transmission electron microscopy in conjunction with
electron energy loss spectroscopy to directly image and chemically characterize
a series of EuO|Si and EuO|YAlO3 interfaces fabricated using different growth
conditions. We identify the presence of europium silicides and regions of
disorder at the EuO|Si interfaces, imperfections that could significantly
reduce spin injection efficiencies via spin-flip scattering
- âŠ