12 research outputs found

    Derivation of Fixed Partial Charges for Amino Acids Accommodating a Specific Water Model and Implicit Polarization

    No full text
    We have developed the IPolQ method for fitting nonpolarizable point charges to implicitly represent the energy of polarization for systems in pure water. The method involves iterative cycles of molecular dynamics simulations to estimate the water charge density around the solute of interest, followed by quantum mechanical calculations at the MP2/cc-pV­(T+d)­Z level to determine updated solute charges. Lennard-Jones parameters are updated starting from the Amber FF99SB nonbonded parameter set to accommodate the new charge model, guided by the comparisons to experimental hydration free energies (HFEs) of neutral amino acid side chain analogs and assumptions about the computed HFEs for charged side chains. These Lennard-Jones parameter adjustments for side-chain analogs are assumed to be transferable to amino acids generally, and new charges for all standard amino acids are then derived in the presence of water modeled by TIP4P-Ew. Overall, the new charges depict substantially more polarized amino acids, particularly in the backbone moieties, than previous Amber charge sets. Efforts to complete a new force field with appropriate torsion parameters for this charge model are underway. The IPolQ method is general and applicable to arbitrary solutes

    Derivation of Fixed Partial Charges for Amino Acids Accommodating a Specific Water Model and Implicit Polarization

    No full text
    We have developed the IPolQ method for fitting nonpolarizable point charges to implicitly represent the energy of polarization for systems in pure water. The method involves iterative cycles of molecular dynamics simulations to estimate the water charge density around the solute of interest, followed by quantum mechanical calculations at the MP2/cc-pV­(T+d)­Z level to determine updated solute charges. Lennard-Jones parameters are updated starting from the Amber FF99SB nonbonded parameter set to accommodate the new charge model, guided by the comparisons to experimental hydration free energies (HFEs) of neutral amino acid side chain analogs and assumptions about the computed HFEs for charged side chains. These Lennard-Jones parameter adjustments for side-chain analogs are assumed to be transferable to amino acids generally, and new charges for all standard amino acids are then derived in the presence of water modeled by TIP4P-Ew. Overall, the new charges depict substantially more polarized amino acids, particularly in the backbone moieties, than previous Amber charge sets. Efforts to complete a new force field with appropriate torsion parameters for this charge model are underway. The IPolQ method is general and applicable to arbitrary solutes

    Influence of Solvent on the Drug-Loading Process of Amphiphilic Nanogel Star Polymers

    No full text
    We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process. Our work suggests that nanoparticle conformational structure is highly sensitive to the choice of solvent, providing avenues for further study as well as predictions for both computational and experimental explorations of the drug-loading process. Our findings suggest that when used in the drug-loading process, dichloromethane, tetrahydrofuran, and toluene allow for a more extensive and increased drug-loading into the interior of nanogel star polymers of the composition studied here. In contrast, methanol is more likely to support shallow or surface loading and, consequently, faster drug release rates. Finally, diethyl ether should not work in a formulation process since none of the regions of the nanogel star polymer appear to be sufficiently solvated by it

    Simulation and Experiments To Identify Factors Allowing Synthetic Control of Structural Features of Polymeric Nanoparticles

    No full text
    To develop a detailed picture of the microscopic structure of gelcore star polymers and to elucidate parameters of the synthetic process that might be exploited to control this structure, simulations of their synthesis were performed that were based on a particular synthetic approach. A range of results was observed from gelation at high reactant concentrations to the formation of various sizes and compositions of star polymers. Contrary to the prevailing experimental viewpoint, the simulations always suggest the production of a broad distribution of star polymer sizes. However, the GPC traces computed from simulation results are in good qualitative agreement with experiment. Topologically, the gelcore star polymers produced by simulation are not compact but, rather, sparse blobs loosely connected by filaments of linker when modeled in a good solvent. This is reflected in scaling relationships that relate polymer size (e.g., radius of gyration) and degree of polymerization. The arm–core composition is observed to be stoichiometric, strongly reflecting relative reactant concentrations during the synthesis. Reactions within star polymers that result in greater intramolecular cross-linking compete with those between star polymers that result in the production of larger star polymers from the joining of smaller ones. The balance in this competition can be controlled through the overall reactant concentration to limit and control resulting star polymer size. Therefore, the mean size, as well as the mean number of arms, can be controlled during synthesis by careful tuning of the overall ratio of the arm and linker reactant concentrations and the total reactant concentration

    Experimental and Computational Studies on the Mechanism of Zwitterionic Ring-Opening Polymerization of δ‑Valerolactone with N‑Heterocyclic Carbenes

    No full text
    Experimental and computational investigations of the zwitterionic ring-opening polymerization (ZROP) of δ-valerolactone (VL) catalyzed by the N-heterocyclic carbenes (NHC) 1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene (<b>1</b>) and 1,3,4,5-tetramethyl-imidazol-2-ylidene (<b>2</b>) were carried out. The ZROP of δ-valerolactone generates cyclic poly­(valerolactone)­s whose molecular weights are higher than predicted from [VL]<sub>0</sub>/[NHC]<sub>0.</sub> Kinetic studies reveal the rate of polymerization is first order in [VL] and first order in [NHC]. Density functional theory (DFT) calculations were carried out to elucidate the key steps involved in the ring-opening of δ-valerolactone and its subsequent oligomerization. These studies have established that the initial steps of the mechanism involve nucleophilic attack of the NHC on δ-valerolactone to form a zwitterionic tetrahedral intermediate. DFT calculations indicate that the highest activation barrier of the entire mechanism is associated with the ring-opening of the tetrahedral intermediate formed from the NHC and δ-valerolactone, a result consistent with inefficient initiation to generate reactive zwitterions. The large barrier in this step is due to the fact that ring-opening requires a partial positive charge to develop next to the directly attached NHC moiety which already bears a delocalized positive charge

    Structural transition of nanogel star polymers with pH by controlling PEGMA interactions with acid or base copolymers

    Get PDF
    <p>We use small angle X-ray scattering (SAXS) to characterise a class of star diblock polymers with a nanogel core on which the outer block arms are comprised of random copolymers of temperature sensitive PEGMA with pH sensitive basic (PDMAEMA) and acidic (PMAA) monomers. The acquired SAXS data show that many of the nanogel star polymers undergo a sharp structural transition over a narrow range of pH, but with unexpectedly large shifts in the apparent pKa with respect to that of the acidic or basic monomer unit, the linear polymer form or even an alternate star polymer with a tightly cross-linked core chemistry. We have demonstrated a distinct and quantifiable structural response for the nanogel star copolymers by altering the core or by pairing the monomers PDMAEMA–PEGMA and PMAA–PEGMA to achieve structural transitions that have typically been observed in stars through changes in arm length and number.</p> <p></p

    Building a More Predictive Protein Force Field: A Systematic and Reproducible Route to AMBER-FB15

    No full text
    The increasing availability of high-quality experimental data and first-principles calculations creates opportunities for developing more accurate empirical force fields for simulation of proteins. We developed the AMBER-FB15 protein force field by building a high-quality quantum chemical data set consisting of comprehensive potential energy scans and employing the ForceBalance software package for parameter optimization. The optimized potential surface allows for more significant thermodynamic fluctuations away from local minima. In validation studies where simulation results are compared to experimental measurements, AMBER-FB15 in combination with the updated TIP3P-FB water model predicts equilibrium properties with equivalent accuracy, and temperature dependent properties with significantly improved accuracy, in comparison with published models. We also discuss the effect of changing the protein force field and water model on the simulation results

    Polymerizing Base Sensitive Cyclic Carbonates Using Acid Catalysis

    No full text
    Organic acids were explored as a means to expand the library of cyclic carbonate monomers capable of undergoing controlled ring-opening polymerization. Various nitrogenous bases have proven incredibly adept at polymerizing cyclic carbonates; however, their use has largely precluded monomers with an acidic proton. Molecular modeling of acid catalysis provided new mechanistic insight, wherein a bifunctional activation pathway was calculated. Depending on acid structure, modeling experiments showed both monomer carbonyls and propagating hydroxyl groups undergo hydrogen bonding activation. The dual activation mechanism suggests acid strength, as well as conjugate base effects, play vital roles in catalyzing cyclic carbonate polymerizations. Moreover, the use of acid catalysis was shown to be compatible with amide-containing monomers while promoting controlled polymerizations

    Catalyst Chelation Effects in Organocatalyzed Ring-Opening Polymerization of Lactide

    No full text
    (−)-Sparteine is a proven organocatalyst for the ring-opening polymerization (ROP) of l-lactide, which affords polymers of controlled molecular weight and narrow polydispersity. The recent worldwide shortage of (−)-sparteine has necessitated the identification of simple and cost-effective replacement ROP catalysts. A series of commercially available molecules was first identified through molecular modeling and then subsequently investigated for polymerizing l-lactide. The modeling proved very useful at predicting spatial relationships and nitrogen geometries that greatly aided in the rapid identification of various alkyl amines as alternative organocatalysts
    corecore