18 research outputs found

    Development of bent-up triangular tab shear transfer (BTTST) enhancement in cold-formed steel (CFS)-concrete composite beams

    Get PDF
    Cold-formed steel (CFS) sections, have been recognised as an important contributor to environmentally responsible and sustainable structures in developed countries, and CFS framing is considered as a sustainable 'green' construction material for low rise residential and commercial buildings. However, there is still lacking of data and information on the behaviour and performance of CFS beam in composite construction. The use of CFS has been limited to structural roof trusses and a host of nonstructural applications. One of the limiting features of CFS is the thinness of its section (usually between 1.2 and 3.2 mm thick) that makes it susceptible to torsional, distortional, lateral-torsional, lateral-distortional and local buckling. Hence, a reasonable solution is resorting to a composite construction of structural CFS section and reinforced concrete deck slab, which minimises the distance from the neutral-axis to the top of the deck and reduces the compressive bending stress in the CFS sections. Also, by arranging two CFS channel sections back-to-back restores symmetricity and suppresses lateraltorsional and to a lesser extent, lateral-distortional buckling. The two-fold advantages promised by the system, promote the use of CFS sections in a wider range of structural applications. An efficient and innovative floor system of built-up CFS sections acting compositely with a concrete deck slab was developed to provide an alternative composite system for floors and roofs in buildings. The system, called Precast Cold-Formed SteelConcrete Composite System, is designed to rely on composite actions between the CFS sections and a reinforced concrete deck where shear forces between them are effectively transmitted via another innovative shear transfer enhancement mechanism called a bentup triangular tab shear transfer (BTTST). The study mainly comprises two major components, i.e. experimental and theoretical work. Experimental work involved smallscale and large-scale testing of laboratory tests. Sixty eight push-out test specimens and fifteen large-scale CFS-concrete composite beams specimens were tested in this program. In the small-scale test, a push-out test was carried out to determine the strength and behaviour of the shear transfer enhancement between the CFS and concrete. Four major parameters were studied, which include compressive strength of concrete, CFS strength, dimensions (size and angle) of BTTST and CFS thickness. The results from push-out test were used to develop an expression in order to predict the shear capacity of innovative shear transfer enhancement mechanism, BTTST in CFS-concrete composite beams. The value of shear capacity was used to calculate the theoretical moment capacity of CFSconcrete composite beams. The theoretical moment capacities were used to validate the large-scale test results. The large-scale test specimens were tested by using four-point load bending test. The results in push-out tests show that specimens employed with BTTST achieved higher shear capacities compared to those that rely only on a natural bond between cold-formed steel and concrete and specimens with Lakkavalli and Liu bent-up tab (LYLB). Load capacities for push-out test specimens with BTTST are ii relatively higher as compared to the equivalent control specimen, i.e. by 91% to 135%. When compared to LYLB specimens the increment is 12% to 16%. In addition, shear capacities of BTTST also increase with the increase in dimensions (size and angle) of BTTST, thickness of CFS and concrete compressive strength. An equation was developed to determine the shear capacity of BTTST and the value is in good agreement with the observed test values. The average absolute difference between the test values and predicted values was found to be 8.07%. The average arithmetic mean of the test/predicted ratio (n) of this equation is 0.9954. The standard deviation (a) and the coefficient of variation (CV) for the proposed equation were 0.09682 and 9.7%, respectively. The proposed equation is recommended for the design of BTTST in CFSconcrete composite beams. In large-scale testing, specimens employed with BTTST increased the strength capacities and reduced the deflection of the specimens. The moment capacities, MU ) e X p for all specimens are above Mu>theory and show good agreement with the calculated ratio (>1.00). It is also found that, strength capacities of CFS-concrete composite beams also increase with the increase in dimensions (size and angle) of BTTST, thickness of CFS and concrete compressive strength and a CFS-concrete composite beam are practically designed with partial shear connection for equal moment capacity by reducing number of BTTST. It is concluded that the proposed BTTST shear transfer enhancement in CFS-concrete composite beams has sufficient strength and is also feasible. Finally, a standard table of characteristic resistance, P t a b of BTTST in normal weight concrete, was also developed to simplify the design calculation of CFSconcrete composite beams

    Effects of Coal Bottom Ash as Cementitious Material on Compressive Strength and Chloride Permeability of Concrete

    Get PDF
    Coal Bottom Ash (CBA) is the waste material produced by coal-based power plants, particularly in Malaysia around 1.7 million tons of CBA was produced annually, which is major environmental concern. Therefore, the use of CBA as a partial replacement of cement in concrete is a possible solution for that pollution; this approach also creates a new corridor in the field of concrete production. However, this study aims to evaluate the effects of CBA as cementitious material on the concrete properties. This study incorporated 10% CBA as a cement replacement by weight method in concrete. However, concrete samples were prepared with and without CBA and immersed in water for 7, 28, 56 and 90 days. Next, the performances of concrete with and without CBA were evaluated in terms of workability, compressive strength, and rapid chloride permeability test. It was found that due to presence of CBA in concrete, workability reduces; no substantial growth in compressive strength at the early ages but substantial rise in strength was noticed after 56 days. Almost 4.7% higher strength was recorded than the control specimens at 90 days. Besides that, concrete containing CBA has lower chloride penetration as compared to the control specimen, which shows its better durability performance. It can be concluded that CBA has an enormous potential to be utilized as a cementitious material in durable concrete production

    Bioremediation a potential approach for soil contaminated with polycyclic aromatic hydrocarbons: An Overview

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) represent a group of priority pollutants which are present at high concentration in soils of many industrially contaminated sites. Standards and criteria for the remediation of soils contaminated with PAHs vary widely between countries. Bioremediation has gained preference as a technology for remediation contaminated sites as it is less expensive and more environmental friendly. Bioremediation utilizes microorganisms to degrade PAHs to less toxic compounds. This technology degrades contaminants through natural biodegradation mechanisms or enhanced biodegradation mechanism and can be performed in-situ or ex-situ under aerobic or anaerobic conditions. The purpose of this paper is to highlight potential of using isolated strains from municipal sludge on soil remediation. Several indigenous bacteria from municipal sludge namely genus Micrococus, Sphingomonas, and Corynebacterium demonstrated a high removal rate of PAHs with more than 80% of lower molecular weight of PAHs degraded after one week incubation. Laboratory studies had established that these genus able to degrade PAHs on contaminated soil. The successful application of bacteria to the bioremediation of PAHs contaminated sites requires a deeper understanding of how microbial PAH degradation proceeds. An overview of research focusing on biodegradation of PAHs will be presented

    Performance of plastic wastes in fiber-reinforced concrete beams

    Get PDF
    Synthetic plastics are typically discarded, thus causing environmental pollution. Plastic wastes are recycled as fiber in concrete to solve this problem. In this study, synthetic fibers in a concrete matrix were investigated through compressive strength, splitting tensile, fracture energy, and flexural beam tests. The results show that an increase in fiber content improves the tensile strength of the concrete matrix. A high fiber content results in a substantial amount of fibers crossing a fractured section, thereby activating failure resistance mechanisms. Ring-shaped fibers, which are mainly designed to activate fiber yielding instead of fiber pullout, are better than irregularly shaped polyethylene terephthalate and waste wire fibers. Incorporating plastic fibers into concrete does not significantly change the failure mode of reinforced concrete beams compared to that of normal concrete beams. However, the first crack load presented improved results. The reinforced concrete containing ring-shaped plastic fibers with a width of 10 mm (RPET-10) exhibited remarkable results during the first crack load with an increment of 32.3%. It can be concluded that ring-shaped PET waste produces fiber concrete with a performance comparable to that of commercial synthetic fibers

    FONDASI PRACETAK TRAPESIUM TEKNIK MENGGAMBAR AUTOCAD

    Get PDF
    Buku ini merupakan kelanjutan dari buku Fondasi Pracetak Trapesium Jilid 1 yang dicetak pada tahun 2018. Pada buku jilid 2 ini berisi berawal dari menggambar fondasi dengan Autocad, membuat cetakan fondasi precast, pengecoran, pengujian dan aplikasi fondasi di lapangan. Pembuatan Buku ini juga dibuat sebagai salah satu output Hibah Penelitian RistekDikti Tahun Anggaran ke II/2019 Skim Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT)

    An overview of bacterial concrete on concrete durability in aggressive environment

    No full text
    Concrete durability determines service life of structures. It can though, be weakened by aggressive environmental conditions. For instance, bio-corrosion process is due to the presence and activity of microorganisms which produce sulphuric acid to form sulphate deterioration of concrete materials. The problems related to durability and repair systems are due to lack of suitable concrete materials. The use bacteria for concrete repairing and plugging of pores and cracking in concrete has been recently explored. Previous studies had proved the possibility of using specific bacteria via bio concrete as a sustainable method for improving concrete properties. Thus, lack of information on the application of bio concrete exposed to extreme condition was the motivation for this research

    Kesan penggunaan RHA terhadap kekuatan dan kebolehtelapan gunite

    Get PDF
    Kertas kerja ini membin cangkan suatu kajian makmal mcnge na i kesan penggunaan Abu Padi Sekam (RHA) dalam gunite. Dalam kajian ini, empat uj ian telah dijalan kan untuk rnembandingkan keputu san penggunaan RHA dalam gun ite dengan gunite biasa. Uji an-uj ian tersebut adalah ujian kekuatan rnampatan, kekuatan belahan tegan gan, keku atan lenturan dan ujian kebolehtelapan. Keputusan daripada uj ian lersebut menunjukkan penggunaan RHA dalam gunite mcmberikan kekuatan rnampatan yang lebih tinggi berband ing gunite biasa Begitu juga dengan kekuatan belahan tegangan dan kekuaLan Jenturan. Bagi uj ian kebo lehtel apan pula did apati keb olch telapan gunite dengan pen ambahan RHA ada lah rendah, manakala gun ite biasa mempunyai kebolehtelapan sederhan
    corecore