356 research outputs found

    Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo.

    Get PDF
    Tissue-engineered skeletal muscle can serve as a physiological model of natural muscle and a potential therapeutic vehicle for rapid repair of severe muscle loss and injury. Here, we describe a platform for engineering and testing highly functional biomimetic muscle tissues with a resident satellite cell niche and capacity for robust myogenesis and self-regeneration in vitro. Using a mouse dorsal window implantation model and transduction with fluorescent intracellular calcium indicator, GCaMP3, we nondestructively monitored, in real time, vascular integration and the functional state of engineered muscle in vivo. During a 2-wk period, implanted engineered muscle exhibited a steady ingrowth of blood-perfused microvasculature along with an increase in amplitude of calcium transients and force of contraction. We also demonstrated superior structural organization, vascularization, and contractile function of fully differentiated vs. undifferentiated engineered muscle implants. The described in vitro and in vivo models of biomimetic engineered muscle represent enabling technology for novel studies of skeletal muscle function and regeneration

    Show case project: camea camea wimtronic – using long-term experience to develop of a novel weighing digital sensor for further evolution of wim technology

    Get PDF
    CAMEA Weigh-In-Motion has been equipped at almost 900 traffic lanes so far, out of which approximately 200 are used for a direct enforcement application. Based on this experience, the system producer was able to identify the main needs the WIM technology has in order to evolve further. These are: facing the problem of drivers who intentionally avoid measurement or behavior documentation, minimizing the impact on the road surface when installing the WIM site, extending the lifetime of the installed WIM sensors. This article suggests the tools to address these needs: Preventing the driver’s maneuvers by taking government/law measures, recognizing such maneuvers and validating the results of the measurement using advanced SW and using sensors with small intrusion into the road and a long lifetime. The company’s newly developed digital weighing sensor WIMTRONIC has numerous innovative characteristics and features. Some of its main advantages are embedded electronics, high accuracy, easy installation, and the possibility to measure previously unobtainable parameters of the vehicle, wheels, axles, and the road. All the while keeping the cost low to present an affordable solution for wide use of WIM.Papers presented at the 40th International Southern African Transport Conference on 04 -08 July 202

    Cluster-mining: An approach for determining core structures of metallic nanoparticles from atomic pair distribution function data

    Get PDF
    We present a novel approach for finding and evaluating structural models of small metallic nanoparticles. Rather than fitting a single model with many degrees of freedom, the approach algorithmically builds libraries of nanoparticle clusters from multiple structural motifs, and individually fits them to experimental PDFs. Each cluster-fit is highly constrained. The approach, called cluster-mining, returns all candidate structure models that are consistent with the data as measured by a goodness of fit. It is highly automated, easy to use, and yields models that are more physically realistic and result in better agreement to the data than models based on cubic close-packed crystallographic cores, often reported in the literature for metallic nanoparticles

    Lipid composition of liver in rats fed diets supplemented with egg yolks of modified composition

    Get PDF
    The aim of this study was to examine the effects of diets supplemented with egg yolks of modified composition on the fatty-acid composition and lipid content in rat’s liver. During four weeks of the experiment 64 Wistar rats were divided into four groups of 16 individuals each (eight individuals of both sexes) and fed a commercial feed mixture for rats (group C) or diet containing 70% commercial mixture for rats and 30% freshly cooked egg yolks from laying hens fed diets with 3% fish oil (group F), 3% palm olein (group P) or 3% lard (group L). Dietary supplementation with egg yolks significantly increased the hepatic cholesterol pool in rats, regardless of the type of fat in the diet of laying hens from which the eggs originated. The content of α-linolenic acid in the liver of male rats in group P was 4-6 times higher compared to males in the other groups. Liver lipids and their fatty-acid composition differ by both, sex and dietary modified egg yolk composition in rats

    Genomic islands: tools of bacterial horizontal gene transfer and evolution

    Get PDF
    Bacterial genomes evolve through mutations, rearrangements or horizontal gene transfer. Besides the core genes encoding essential metabolic functions, bacterial genomes also harbour a number of accessory genes acquired by horizontal gene transfer that might be beneficial under certain environmental conditions. The horizontal gene transfer contributes to the diversification and adaptation of microorganisms, thus having an impact on the genome plasticity. A significant part of the horizontal gene transfer is or has been facilitated by genomic islands (GEIs). GEIs are discrete DNA segments, some of which are mobile and others which are not, or are no longer mobile, which differ among closely related strains. A number of GEIs are capable of integration into the chromosome of the host, excision, and transfer to a new host by transformation, conjugation or transduction. GEIs play a crucial role in the evolution of a broad spectrum of bacteria as they are involved in the dissemination of variable genes, including antibiotic resistance and virulence genes leading to generation of hospital ‘superbugs', as well as catabolic genes leading to formation of new metabolic pathways. Depending on the composition of gene modules, the same type of GEIs can promote survival of pathogenic as well as environmental bacteri

    Exosomal release of L-plastin by breast cancer cells facilitates metastatic bone osteolysis

    Get PDF
    Bone metastasis from breast and prostate carcinomas is facilitated by activation of bone-resorbing osteoclasts. Using proteomics approaches, we have identified peroxiredoxin-4 (PRDX4) as a cancer-secreted mediator of osteoclastogenesis. We now report characterization of L-plastin in the conditioned media (CM) of MDA-MB-231 human breast cancer cells using immunoblotting and mass spectrometry. The osteoclastogenic potential of MDAMB-231 CM with siRNA-silenced L-plastin was significantly reduced. L-plastin was detected in cancer-derived exosomes, and inhibition of exosomal release significantly decreased the osteoclastogenic capacity of MDA-MB-231 CM. When added to osteoclast precursors primed with RANKL for 2 days, recombinant L-plastin induced calcium/NFATc1-mediated osteoclastogenesis to the levels similar to continuous treatment with RANKL. Using shRNA, we generated MDA-MB-231 cells lacking L-plastin, PRDX4, or both and injected these cell populations intratibially in CD-1 immunodeficient mice. Micro-CT and histomorphometric analysis demonstrated a complete loss of osteolysis when MDA-MB-231 cells lacking both L-plastin and PRDX4 were injected. A meta-analysis established an increase in L-plastin and PRDX4 mRNA expression in numerous human cancers, including breast and prostate carcinomas. This study demonstrates that secreted L-plastin and PRDX4 mediate osteoclast activation by human breast cancer cells
    corecore