52 research outputs found

    Comparison of (semi-)automatic and manually adjusted measurements of left ventricular function in dual source computed tomography using three different software tools

    Get PDF
    To assess the accuracy of (semi-)automatic measurements of left ventricular (LV) functional parameters in cardiac dual-source computed tomography (DSCT) compared to manually adjusted measurements in three different workstations. Forty patients, who underwent cardiac DSCT, were included (31 men, mean age 58 ± 14 years). Multiphase reconstructions were made with ten series at every 10% of the RR-interval. LV function analysis was performed on three different, commercially available workstations. On all three workstations, end-systolic volume (ESV), end-diastolic volume (EDV), LV ejection fraction (LVEF) and myocardial mass (MM) were calculated as automatically as possible. With the same DSCT datasets, LV functional parameters were also calculated with as many manual adjustments as needed for accurate assessment for all three software tools. For both semi-automatic as well as manual methods, time needed for evaluation was recorded. Paired t-tests were employed to calculate differences in LV functional parameters. Repeated measurements were performed to determine intra-observer and inter-observer variability. (Semi-)automatic measurements revealed a good correlation with manually adjusted measurements for Vitrea (LVEF r = 0.93, EDV r = 0.94, ESV r = 0.98 and MM r = 0.94) and Aquarius (LVEF r = 0.96, EDV r = 0.94, ESV r = 0.98 and MM r = 0.96). Also, good correlation was obtained for Circulation, except for LVEF (LVEF r = 0.45, EDV r = 0.93, ESV r = 0.92 and MM r = 0.86). However, statistically significant differences were found between (semi-)automatically and manually adjusted measurements for LVEF (P < 0.05) and ESV (P < 0.001) in Vitrea, all LV functional parameters in Circulation (P < 0.001) and EDV, ESV and MM (<0.001) in Aquarius Workstation. (Semi-)automatic measurement of LV functional parameters is feasible, but significant differences were found for at least two different functional parameters in all three workstations. Therefore, expert manual correction is recommended at all times

    Erufosine, a novel alkylphosphocholine, in acute myeloid leukemia: single activity and combination with other antileukemic drugs

    Get PDF
    Alkylphosphocholines represent a new class of cytostatic drugs with a novel mode of action. Erufosine (ErPC3), the first compound of this class that can be administered intravenously, has recently been shown to be active against human tumor and leukemic cell lines. METHODS: In order to evaluate the antileukemic potential of ErPC3 in acute myeloid leukemia (AML) the lethal concentration 50% (LC 50) was determined using WST-1 assay. For analysis of cell death, staining for Annexin V and activated caspase 3 was performed. An interaction analysis was performed by calculation of combination index and construction of isobolograms. RESULTS: The LC 50 was 7.4 microg/ml after 24 h and 3.2 microg/ml after 72 h in HL 60 cells and 30.1 and 8.6 microg/ml, respectively, in 19 fresh samples from patients with AML. ErPC3 was found to be cytotoxic in HL60 cells with distinct activation of caspase 3. ErPC3 was not cross-resistant with cytarabine, idarubicine and etoposide as shown by the linear relation of respective LC 50s. The latter agents, however, exerted an additive cytotoxicity in combination with ErPC3 as revealed by isobologram analysis and combination index, although results are uneven for idarubicine. CONCLUSION: Based on these data ErPC3 appears as a novel antileukemic candidate drug, which needs to be explored further in the treatment of AML

    Epigenetic polypharmacology: from combination therapy to multitargeted drugs

    Get PDF
    The modern drug discovery process has largely focused its attention in the so-called magic bullets, single chemical entities that exhibit high selectivity and potency for a particular target. This approach was based on the assumption that the deregulation of a protein was causally linked to a disease state, and the pharmacological intervention through inhibition of the deregulated target was able to restore normal cell function. However, the use of cocktails or multicomponent drugs to address several targets simultaneously is also popular to treat multifactorial diseases such as cancer and neurological disorders. We review the state of the art with such combinations that have an epigenetic target as one of their mechanisms of action. Epigenetic drug discovery is a rapidly advancing field, and drugs targeting epigenetic enzymes are in the clinic for the treatment of hematological cancers. Approved and experimental epigenetic drugs are undergoing clinical trials in combination with other therapeutic agents via fused or linked pharmacophores in order to benefit from synergistic effects of polypharmacology. In addition, ligands are being discovered which, as single chemical entities, are able to modulate multiple epigenetic targets simultaneously (multitarget epigenetic drugs). These multiple ligands should in principle have a lower risk of drug-drug interactions and drug resistance compared to cocktails or multicomponent drugs. This new generation may rival the so-called magic bullets in the treatment of diseases that arise as a consequence of the deregulation of multiple signaling pathways provided the challenge of optimization of the activities shown by the pharmacophores with the different targets is addressed

    The plastic energy landscape of protein folding: A triangular folding mechanism with an equilibrium intermediate for a small protein domain.

    No full text
    • 

    corecore