16 research outputs found

    Red Clover Aryl Hydrocarbon Receptor (AhR) and Estrogen Receptor (ER) Agonists Enhance Genotoxic Estrogen Metabolism

    No full text
    Many women consider botanical dietary supplements (BDSs) as safe alternatives to hormone therapy for menopausal symptoms. However, the effect of BDSs on breast cancer risk is largely unknown. In the estrogen chemical carcinogenesis pathway, P450 1B1 metabolizes estrogens to 4-hydroxylated catechols, which are oxidized to genotoxic quinones that initiate and promote breast cancer. In contrast, P450 1A1 catalyzed 2-hydroxylation represents a detoxification pathway. The current study evaluated the effects of red clover, a popular BDS used for women’s health, and its isoflavones, biochanin A (BA), formononetin (FN), genistein (GN), and daidzein (DZ), on estrogen metabolism. The methoxy estrogen metabolites (2-MeOE<sub>1</sub>, 4-MeOE<sub>1</sub>) were measured by LC-MS/MS, and CYP1A1 and CYP1B1 gene expression was analyzed by qPCR. Nonmalignant ER-negative breast epithelial cells (MCF-10A) and ER-positive breast cancer cells (MCF-7) were derived from normal breast epithelial tissue and ER+ breast cancer tissue. Red clover extract (RCE, 10 ÎŒg/mL) and isoflavones had no effect on estrogen metabolism in MCF-10A cells. However, in MCF-7 cells, RCE treatments downregulated CYP1A1 expression and enhanced genotoxic metabolism (4-MeOE<sub>1</sub>/CYP1B1 > 2-MeOE<sub>1</sub>/CYP1A1). Experiments with the isoflavones showed that the AhR agonists (BA, FN) preferentially induced CYP1B1 expression as well as 4-MeOE<sub>1</sub>. In contrast, the ER agonists (GN, DZ) downregulated CYP1A1 expression likely through an epigenetic mechanism. Finally, the ER antagonist ICI 182,780 potentiated isoflavone-induced XRE-luciferase reporter activity and reversed GN and DZ induced downregulation of CYP1A1 expression. Overall, these studies show that red clover and its isoflavones have differential effects on estrogen metabolism in “normal” vs breast cancer cells. In breast cancer cells, the AhR agonists stimulate genotoxic metabolism, and the ER agonists downregulate the detoxification pathway. These data may suggest that especially breast cancer patients should avoid red clover and isoflavone based BDSs when making choices for menopausal symptom relief

    Differential Effects of <i>Glycyrrhiza</i> Species on Genotoxic Estrogen Metabolism: Licochalcone A Downregulates P450 1B1, whereas Isoliquiritigenin Stimulates It

    No full text
    Estrogen chemical carcinogenesis involves 4-hydroxylation of estrone/estradiol (E<sub>1</sub>/E<sub>2</sub>) by P450 1B1, generating catechol and quinone genotoxic metabolites that cause DNA mutations and initiate/promote breast cancer. Inflammation enhances this effect by upregulating P450 1B1. The present study tested the three authenticated medicinal species of licorice [Glycyrrhiza glabra (GG), G. uralensis (GU), and G. inflata (GI)] used by women as dietary supplements for their anti-inflammatory activities and their ability to modulate estrogen metabolism. The pure compounds, liquiritigenin (LigF), its chalcone isomer isoliquiritigenin (LigC), and the GI-specific licochalcone A (LicA) were also tested. The licorice extracts and compounds were evaluated for anti-inflammatory activity by measuring inhibition of iNOS activity in macrophage cells: GI ≫ GG > GU and LigC ≅ LicA ≫ LigF. The Michael acceptor chalcone, LicA, is likely responsible for the anti-inflammatory activity of GI. A sensitive LC-MS/MS assay was employed to quantify estrogen metabolism by measuring 2-MeOE<sub>1</sub> as nontoxic and 4-MeOE<sub>1</sub> as genotoxic biomarkers in the nontumorigenic human mammary epithelial cell line, MCF-10A. GG, GU, and LigC increased 4-MeOE<sub>1</sub>, whereas GI and LicA inhibited 2- and 4-MeOE<sub>1</sub> levels. GG, GU (5 ÎŒg/mL), and LigC (1 ÎŒM) also enhanced P450 1B1 expression and activities, which was further increased by inflammatory cytokines (TNF-α and IFN-Îł). LicA (1, 10 ÎŒM) decreased cytokine- and TCDD-induced P450 1B1 gene expression and TCDD-induced xenobiotic response element luciferase reporter (IC<sub>50</sub> = 12.3 ÎŒM), suggesting an antagonistic effect on the aryl hydrocarbon receptor, which regulates P450 1B1. Similarly, GI (5 ÎŒg/mL) reduced cytokine- and TCDD-induced P450 1B1 gene expression. Collectively, these data suggest that, of the three licorice species that are used in botanical supplements, GI represents the most promising chemopreventive licorice extract for women’s health. Additionally, the differential effects of the <i>Glycyrrhiza</i> species on estrogen metabolism emphasize the importance of standardization of botanical supplements to species-specific bioactive compounds

    Raloxifene and Desmethylarzoxifene Block Estrogen- Induced Malignant Transformation of Human Breast Epithelial Cells

    Get PDF
    There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not proliferative in this cell line. The human and equine estrogen components of estrogen replacement therapy (ERT) and their catechol metabolites were studied, along with the influence of co-administration of selective estrogen receptor modulators (SERMs), raloxifene and desmethyl-arzoxifene (DMA), and histone deacetylase inhibitors. Transformation was induced by human estrogens, and selectively by the 4-OH catechol metabolite, and to a lesser extent by an equine estrogen metabolite. The observed estrogen-induced upregulation of CYP450 1B1 in estrogen receptor negative MCF-10A cells, was compatible with a causal role for 4-OH catechol estrogens, as was attenuated transformation by CYP450 inhibitors. Estrogen-induced malignant transformation was blocked by SERMs correlating with a reduction in formation of nucleobase catechol estrogen (NCE) adducts and formation of 8-oxo-dG. NCE adducts can be formed consequent to DNA abasic site formation, but NCE adducts were also observed on incubation of estrogen quinones with free nucleotides. These results suggest that NCE adducts may be a biomarker for cellular electrophilic stress, which together with 8-oxo-dG as a biomarker of oxidative stress correlate with malignant transformation induced by estrogen oxidative metabolites. The observed attenuation of transformation by SERMs correlated with these biomarkers and may also be of clinical significance in breast cancer chemoprevention

    Dynamic Residual Complexity of the Isoliquiritigenin–Liquiritigenin Interconversion During Bioassay

    No full text
    Bioactive components in food plants can undergo dynamic processes that involve multiple chemical species. For example, 2â€Č-hydroxychalcones can readily isomerize into flavanones. Although chemically well documented, this reaction has barely been explored in the context of cell-based assays. The present time-resolved study fills this gap by investigating the isomerization of isoliquiritigenin (a 2â€Č-hydroxychalcone) and liquiritigenin (a flavanone) in two culture media (Dulbecco’s modified eagle medium and Roswell Park Memorial Institute medium) with and without MCF-7 cells, using high-performance liquid chromatography–diode array detector–electrospray ionization/atmospheric pressure chemical ionization–mass spectrometry for analysis. Both compounds were isomerized and epimerized under all investigated biological conditions, leading to mixtures of isoliquiritigenin and <i>R</i>/<i>S</i>-liquiritigenin, with 19.6% <i>R</i> enantiomeric excess. Consequently, all three species can potentially modulate the biological responses. This exemplifies dynamic residual complexity and demonstrates how both nonchiral reactions and enantiomeric discrimination can occur in bioassay media, with or without cells. The findings highlight the importance of controlling in situ chemical reactivity, influenced by biological systems when evaluating the mode of action of bioactives

    DESIGNER Extracts as Tools to Balance Estrogenic and Chemopreventive Activities of Botanicals for Women’s Health

    No full text
    Botanical dietary supplements contain multiple bioactive compounds that target numerous biological pathways. The lack of uniform standardization requirements is one reason that inconsistent clinical effects are reported frequently. The multifaceted biological interactions of active principles can be disentangled by a coupled pharmacological/phytochemical approach using specialized (“knock-out”) extracts. This is demonstrated for hops, a botanical for menopausal symptom management. Employing targeted, adsorbent-free countercurrent separation, <i>Humulus lupulus</i> extracts were designed for pre- and postmenopausal women by containing various amounts of the phytoestrogen 8-prenylnaringenin (8-PN) and the chemopreventive constituent xanthohumol (XH). Analysis of their estrogenic (alkaline phosphatase), chemopreventive (NAD­(P)­H-quinone oxidoreductase 1 [NQO1]), and cytotoxic bioactivities revealed that the estrogenicity of hops is a function of 8-PN, whereas their NQO1 induction and cytotoxic properties depend on XH levels. Antagonization of the estrogenicity of 8-PN by elevated XH concentrations provided evidence for the interdependence of the biological effects. A designed postmenopausal hop extract was prepared to balance 8-PN and XH levels for both estrogenic and chemopreventive properties. An extract designed for premenopausal women contains reduced 8-PN levels and high XH concentrations to minimize estrogenic while retaining chemopreventive properties. This study demonstrates the feasibility of modulating the concentrations of bioactive compounds in botanical extracts for potentially improved efficacy and safety

    Hop (<i>Humulus lupulus</i> L.) Extract and 6‑Prenylnaringenin Induce P450 1A1 Catalyzed Estrogen 2‑Hydroxylation

    No full text
    <i>Humulus lupulus</i> L. (hops) is a popular botanical dietary supplement used by women as a sleep aid and for postmenopausal symptom relief. In addition to its efficacy for menopausal symptoms, hops can also modulate the chemical estrogen carcinogenesis pathway and potentially protect women from breast cancer. In the present study, an enriched hop extract and the key bioactive compounds [6-prenylnarigenin (6-PN), 8-prenylnarigenin (8-PN), isoxanthohumol (IX), and xanthohumol (XH)] were tested for their effects on estrogen metabolism in breast cells (MCF-10A and MCF-7). The methoxyestrones (2-/4-MeOE<sub>1</sub>) were analyzed as biomarkers for the nontoxic P450 1A1 catalyzed 2-hydroxylation and the genotoxic P450 1B1 catalyzed 4-hydroxylation pathways, respectively. The results indicated that the hop extract and 6-PN preferentially induced the 2-hydroxylation pathway in both cell lines. 8-PN only showed slight up-regulation of metabolism in MCF-7 cells, whereas IX and XH did not have significant effects in either cell line. To further explore the influence of hops and its bioactive marker compounds on P450 1A1/1B1, mRNA expression and ethoxyresorufin <i>O</i>-dealkylase (EROD) activity were measured. The results correlated with the metabolism data and showed that hop extract and 6-PN preferentially enhanced P450 1A1 mRNA expression and increased P450 1A1/1B1 activity. The aryl hydrocarbon receptor (AhR) activation by the isolated compounds was tested using xenobiotic response element (XRE) luciferase construct transfected cells. 6-PN was found to be an AhR agonist that significantly induced XRE activation and inhibited 2,3,7,8-tetrachlorodibenzo-<i>p</i>-dioxin (TCDD) induced XRE activity. 6-PN mediated induction of EROD activity was also inhibited by the AhR antagonist CH223191. These data show that the hop extract and 6-PN preferentially enhance the nontoxic estrogen 2-hydroxylation pathway through AhR mediated up-regulation of P450 1A1, which further emphasizes the importance of standardization of botanical extracts to multiple chemical markers for both safety and desired bioactivity

    Different <i>Glycyrrhiza</i> species and their bioactive compounds induce ER dependent estrogenic response in MCF-7 cells.

    No full text
    <p>ERE-luciferase induction in ERα (+) MCF-7 cells by A) licorice and hops extracts and B) their respective compounds. Cells were cotransfected with pERE and pRL-TK 24 h before being treated with either extracts (2 ”g/mL, open bars and 10 ”g/mL, closed bars) or pure compounds (0.1 ”M, open bars and 1 ”M, closed bars). 17ÎČ-Estradiol (1 nM) was used as positive control. Since hops extract showed a considerable estrogenic activity at 2 ÎŒg/mL, higher concentrations were not tested. Chemiluminescence analysis was performed after 24 h. Results were normalized for transfection efficiency, and they are shown as a fold induction relative to the level observed in cells treated with vehicle only. Results are the means of three independent determinations in duplicates ± SD.</p

    <i>Glycyrrhiza</i> species and their bioactive compounds induce the estrogenic marker,<i>Tff1</i> mRNA, in T47D cells.

    No full text
    <p>Estrogen responsive gene (<i>Tff1</i>) induction in T47D cells by A) licorice and hops extracts (10 ”g/mL) and B) the related compounds 8-PN (100 nM), LigF (5 ”M), and Lig C (5 ”M). 17ÎČ-Estradiol (100 nM) was used as positive control. Results are the means of four independent determinations in duplicates ± SD.</p
    corecore