89 research outputs found

    Artificial Intelligence for Global Health: Learning From a Decade of Digital Transformation in Health Care

    Get PDF
    The health needs of those living in resource-limited settings are a vastly overlooked and understudied area in the intersection of machine learning (ML) and health care. While the use of ML in health care is more recently popularized over the last few years from the advancement of deep learning, low-and-middle income countries (LMICs) have already been undergoing a digital transformation of their own in health care over the last decade, leapfrogging milestones due to the adoption of mobile health (mHealth). With the introduction of new technologies, it is common to start afresh with a top-down approach, and implement these technologies in isolation, leading to lack of use and a waste of resources. In this paper, we outline the necessary considerations both from the perspective of current gaps in research, as well as from the lived experiences of health care professionals in resource-limited settings. We also outline briefly several key components of successful implementation and deployment of technologies within health systems in LMICs, including technical and cultural considerations in the development process relevant to the building of machine learning solutions. We then draw on these experiences to address where key opportunities for impact exist in resource-limited settings, and where AI/ML can provide the most benefit.Comment: Accepted Paper at ICLR 2020 Workshop on Practical ML for Developing Countrie

    Conversion of JPG Image into DICOM Image Format with One Click Tagging

    Get PDF
    DICOM images are the centerpiece of radiological imaging. They contain a lot of metadata information about the patient, procedure, sequence of images, device and location. To modify, annotate or simply anonymize images for distribution, we often need to convert DICOM images to another format like jpeg since there are a number of image manipulation tools available for jpeg images compared to DICOM. As part of a research at our institution to customize radiology images to assess cognitive ability of multiple user groups, we created an open-source tool called Jpg2DicomTags, which is able to extract DICOM metadata tags, convert images to lossless jpg that can be manipulated and subsequently reconvert jpg images to DICOM by adding back the metadata tags. This tool provides a simple, easy to use user-interface for a tedious manual task that providers, researchers and patients might often need to do

    Comparison of Open-Source Electronic Health Record Systems Based on Functional and User Performance Criteria

    Get PDF
    Objectives: Open-source Electronic Health Record (EHR) systems have gained importance. The main aim of our research is to guide organizational choice by comparing the features, functionality, and user-facing system performance of the five most popular open-source EHR systems. Methods: We performed qualitative content analysis with a directed approach on recently published literature (2012-2017) to develop an integrated set of criteria to compare the EHR systems. The functional criteria are an integration of the literature, meaningful use criteria, and the Institute of Medicine's functional requirements of EHR, whereas the user-facing system performance is based on the time required to perform basic tasks within the EHR system. Results: Based on the Alexa web ranking and Google Trends, the five most popular EHR systems at the time of our study were OSHERA VistA, GNU Health, the Open Medical Record System (OpenMRS), Open Electronic Medical Record (OpenEMR), and OpenEHR. We also found the trends in popularity of the EHR systems and the locations where they were more popular than others. OpenEMR met all the 32 functional criteria, OSHERA VistA met 28, OpenMRS met 12 fully and 11 partially, OpenEHR-based EHR met 10 fully and 3 partially, and GNU Health met the least with only 10 criteria fully and 2 partially. Conclusions: Based on our functional criteria, OpenEMR is the most promising EHR system, closely followed by VistA. With regards to user-facing system performance, OpenMRS has superior performance in comparison to OpenEMR

    Full Training versus Fine Tuning for Radiology Images Concept Detection Task for the ImageCLEF 2019 Challenge

    Get PDF
    Concept detection from medical images remains a challenging task that limits implementation of clinical ML/AI pipelines because of the scarcity of the highly trained experts to annotate images. There is a need for automated processes that can extract concrete textual information from image data. ImageCLEF 2019 provided us a set of images with labels as UMLS concepts. We participated for the rst time for the concept detection task using transfer learning. Our approach involved an experiment of layerwise ne tuning (full training) versus ne tuning based on previous reported recommendations for training classi cation, detection and segmentation tasks for medical imaging. We ranked number 9 in this year's challenge, with an F1 result of 0.05 after three entries. We had a poor result from performing layerwise tuning (F1 score of 0.014) which is consistent with previous authors who have described the bene t of full training for transfer learning. However when looking at the results by a radiologist, the terms do not make clinical sense and we hypothesize that we can achieve better performance when using medical pretrained image models for example PathNet and utilizing a hierarchical training approach which is the basis of our future work on this dataset

    Natural language processing of MIMIC-III clinical notes for identifying diagnosis and procedures with neural networks

    Get PDF
    Coding diagnosis and procedures in medical records is a crucial process in the healthcare industry, which includes the creation of accurate billings, receiving reimbursements from payers, and creating standardized patient care records. In the United States, Billing and Insurance related activities cost around $471 billion in 2012 which constitutes about 25% of all the U.S hospital spending. In this paper, we report the performance of a natural language processing model that can map clinical notes to medical codes, and predict final diagnosis from unstructured entries of history of present illness, symptoms at the time of admission, etc. Previous studies have demonstrated that deep learning models perform better at such mapping when compared to conventional machine learning models. Therefore, we employed state-of-the-art deep learning method, ULMFiT on the largest emergency department clinical notes dataset MIMIC III which has 1.2M clinical notes to select for the top-10 and top-50 diagnosis and procedure codes. Our models were able to predict the top-10 diagnoses and procedures with 80.3% and 80.5% accuracy, whereas the top-50 ICD-9 codes of diagnosis and procedures are predicted with 70.7% and 63.9% accuracy. Prediction of diagnosis and procedures from unstructured clinical notes benefit human coders to save time, eliminate errors and minimize costs. With promising scores from our present model, the next step would be to deploy this on a small-scale real-world scenario and compare it with human coders as the gold standard. We believe that further research of this approach can create highly accurate predictions that can ease the workflow in a clinical setting.Comment: This is a shortened version of the Capstone Project that was accepted by the Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Master of Science in Health Informatics in Dec 201

    Evaluating user acceptance of an open-source mobile app for hospital price transparency rule

    Get PDF
    In 2021, the US Center for Medicare and Medicaid Service mandated the Price Transparency Rule, requiring hospitals to publish a patient service price list called Charge Description Master. However, the mandated machine-readable formats made it difficult for patients to understand pricing and limited price transparency. To address this, we developed the LibreHealth Cost of Care Explorer App to provide patients with a user-friendly format of the CDM. We conducted a mixed-methods user study with 55 patients in two large US cities, one in a safety-net hospital and another in a for-profit hospital, and used PLS-SEM path modeling to analyze the app’s acceptability using the Unified Theory of Acceptance and Use of Technology constructs. Behavioral Intention and Facilitating Conditions significantly impacted Usage Behavior. Effort Expectancy also had a positive impact. Further explanations for the observed model differences in the two hospital systems were obtained from think-aloud observations and semi-structured interviews

    Using ImageBERT to improve performance of multi-class Chest Xray classification

    Get PDF
    Pulmonary edema is a medical condition that is often related to life-threatening heart-related complications. Several recent studies have demonstrated that machine learning models using deep learning (DL) methods are able to identify anomalies on chest X-rays (CXR) as well as trained radiologists. Yet, there are limited/no studies that have integrated these models in clinical radiology workflows. The objective of this project is to identify state-of-the-art DL algorithms and integrate the classification results into the radiology workflow, more specifically in a DICOM Viewer, so that radiologists can use it as a clinical decision support. Our proof-of-concept (POC) is to detect the presence/absence of edema in chest radiographs obtained from the CheXpert dataset. We implemented the state-of-the-art deep learning methods for image classification -ResNet50, VGG16 and Inception v4 using the FastAI library and PyTorch on 77,408 CXR which have classified the presence/absence of edema in the images with an accuracy of 65%, 70% and 65% respectively on a test dataset of about 202 images. The CXR were converted to DICOM format using the img2dcm utility of DICOM ToolKit (DCMTK), and later uploaded to the Orthanc PACS, which was connected to the OHIF Viewer. This is the first study that has integrated the machine learning outcomes into the clinical workflow in order to improve the decision-making process by implementing object detection and instance segmentation algorithms.NSF #192848

    Phronesis of AI in radiology: Superhuman meets natural stupidity

    Get PDF
    Advances in AI in the last decade have clearly made economists, politicians, journalists, and citizenry in general believe that the machines are coming to take human jobs. We review 'superhuman' AI performance claims in radiology and then provide a self-reflection on our own work in the area in the form of a critical review, a tribute of sorts to McDermotts 1976 paper, asking the field for some self-discipline. Clearly there is an opportunity to replace humans, but there are better opportunities, as we have discovered to fit cognitive abilities of human and non-humans. We performed one of the first studies in radiology to see how human and AI performance can complement and improve each others performance for detecting pneumonia in chest X-rays. We question if there is a practical wisdom or phronesis that we need to demonstrate in AI today as well as in our field. Using this, we articulate what AI as a field has already and probably can in the future learn from Psychology, Cognitive Science, Sociology and Science and Technology Studies

    Few-Shot Transfer Learning to improve Chest X-Ray pathology detection using limited triplets

    Get PDF
    Deep learning approaches applied to medical imaging have reached near-human or better-than-human performance on many diagnostic tasks. For instance, the CheXpert competition on detecting pathologies in chest x-rays has shown excellent multi-class classification performance. However, training and validating deep learning models require extensive collections of images and still produce false inferences, as identified by a human-in-the-loop. In this paper, we introduce a practical approach to improve the predictions of a pre-trained model through Few-Shot Learning (FSL). After training and validating a model, a small number of false inference images are collected to retrain the model using \textbf{\textit{Image Triplets}} - a false positive or false negative, a true positive, and a true negative. The retrained FSL model produces considerable gains in performance with only a few epochs and few images. In addition, FSL opens rapid retraining opportunities for human-in-the-loop systems, where a radiologist can relabel false inferences, and the model can be quickly retrained. We compare our retrained model performance with existing FSL approaches in medical imaging that train and evaluate models at once

    A Platform for Innovation and Standards Evaluation: a Case Study from the OpenMRS Open-Source Radiology Information System

    Get PDF
    Open-source development can provide a platform for innovation by seeking feedback from community members as well as providing tools and infrastructure to test new standards. Vendors of proprietary systems may delay adoption of new standards until there are sufficient incentives such as legal mandates or financial incentives to encourage/mandate adoption. Moreover, open-source systems in healthcare have been widely adopted in low- and middle-income countries and can be used to bridge gaps that exist in global health radiology. Since 2011, the authors, along with a community of open-source contributors, have worked on developing an open-source radiology information system (RIS) across two communities-OpenMRS and LibreHealth. The main purpose of the RIS is to implement core radiology workflows, on which others can build and test new radiology standards. This work has resulted in three major releases of the system, with current architectural changes driven by changing technology, development of new standards in health and imaging informatics, and changing user needs. At their core, both these communities are focused on building general-purpose EHR systems, but based on user contributions from the fringes, we have been able to create an innovative system that has been used by hospitals and clinics in four different countries. We provide an overview of the history of the LibreHealth RIS, the architecture of the system, overview of standards integration, describe challenges of developing an open-source product, and future directions. Our goal is to attract more participation and involvement to further develop the LibreHealth RIS into an Enterprise Imaging System that can be used in other clinical imaging including pathology and dermatology
    • …
    corecore