22 research outputs found

    Top-Ranked Priority Research Questions for Soil Science in the 21st Century

    Get PDF
    Soils provide critical support essential for life on earth, regulate processes across diverse terrestrial and aquatic ecosystems, and interact with the atmosphere. However, soil science is constrained by a variety of challenges including decreasing funding prospects and a declining number of new students and young professionals. Hence, there is a crucial need to revitalize the impact, relevance, and recognition of soil science as well as promote collaboration beyond traditionally defined soil science research disciplines. Such revitalization and collaboration may be fostered by a shift from discipline-focused soil science research to cross-disciplinary research approaches and issue-driven research. In this paper, we present the outcomes of an initiative to identify priority research questions as a tool for guiding future soil science research. The collaborative approach involved four stages including (i) survey-based solicitation of questions; (ii) criteria-based screening of submitted candidate questions, (iii) criteria-based ranking of screened questions, and (iv) final revision of top ranked questions. The 25 top ranked research questions emerged from 140 submitted candidate questions within five predetermined thematic areas that represent current and emerging research areas. We expect that the identified questions will inspire both existing and prospective researchers, enhance multi-disciplinary collaboration both within and outside soil science, draw the attention of grant-awarding bodies, and guide soil science research to address pressing societal, agricultural, and environmental challenges. Furthermore, we hope that the approach and findings presented in this paper will advance soil sciences by fostering improved collaboration among soil science practitioners and researchers, as well as with other sciences, policy experts, and emerging professionals (including students) to meet societal needs

    Integrating Ground Penetrating Radar, Lidar, and Geologic Mapping to Image Fault Displacements at Mount Mazama (Crater Lake), Oregon

    No full text
    Geologic mapping indicates that normal faults on the western flank of Mount Mazama offset ~16 ka Last Glacial Maximum (LGM) till and underlying glaciated lava. Scarps are mantled by ignimbrite of the ~7.7 ka climactic, caldera-forming eruption. The timing of fault movement relative to the climactic eruption remains uncertain. If fault motion significantly predated the eruption, a stratified colluvial wedge should exist between the LGM till or lava and the ignimbrite. If most-recent fault motion closely predated the eruption, the colluvial wedge should be thin or non-existent and perhaps retain evidence of ground surface disruption. In order to image colluvial wedge internal structure and identify optimal sites for trenching, lidar analysis was combined with geologic mapping to select sites for cross-fault ground penetrating radar (GPR) profiles. Optimal targets were characterized by scarps, typically 2‑3 m high, where geologic mapping suggested that mantling ignimbrite was likely to be less than a few meters thick above the hanging wall. GPR profiles, 15-35 m long, were collected across 4 fault target sites with antenna frequencies of 50, 100, 200, and 500 MHz. The profiles suggest 2-3 meters of vertical offset on subhorizontal contacts at 2-20 meters depth, with offsets more abrupt than the current topographic slopes. Bright diffractions within the fault zone are recorded to 10 meters depth. At two sites, hanging wall contacts dip into the fault. Shallow (1-2 m depth) energy returns from the hanging wall are more locally disrupted and less continuous than returns from comparable depth on the footwall. These data and other subtle GPR returns may indicate colluvial fill over hanging-wall rocks and possibly reverse drag of the paleo ground surface. Trenching is clearly required for confirmation of lithologies between contacts associated with GPR energy returns. The data demonstrate, however, that the combination of lidar, geologic mapping, and selected GPR profiles can confirm the presence of a fault, reveal subsurface layering, and guide siting of trenches critical to understanding the relative timing of faulting and the climactic eruption

    Top-Ranked Priority Research Questions for Soil Science in the 21st Century

    No full text
    Soils provide critical support essential for life on earth, regulate processes across diverse terrestrial and aquatic ecosystems, and interact with the atmosphere. However, soil science is constrained by a variety of challenges including decreasing funding prospects and a declining number of new students and young professionals. Hence, there is a crucial need to revitalize the impact, relevance, and recognition of soil science as well as promote collaboration beyond traditionally defined soil science research disciplines. Such revitalization and collaboration may be fostered by a shift from discipline-focused soil science research to cross-disciplinary research approaches and issue-driven research. In this paper, we present the outcomes of an initiative to identify priority research questions as a tool for guiding future soil science research. The collaborative approach involved four stages including (i) survey-based solicitation of questions; (ii) criteria-based screening of submitted candidate questions, (iii) criteria-based ranking of screened questions, and (iv) final revision of top ranked questions. The 25 top ranked research questions emerged from 140 submitted candidate questions within five predetermined thematic areas that represent current and emerging research areas. We expect that the identified questions will inspire both existing and prospective researchers, enhance multi-disciplinary collaboration both within and outside soil science, draw the attention of grant-awarding bodies, and guide soil science research to address pressing societal, agricultural, and environmental challenges. Furthermore, we hope that the approach and findings presented in this paper will advance soil sciences by fostering improved collaboration among soil science practitioners and researchers, as well as with other sciences, policy experts, and emerging professionals (including students) to meet societal needs.This article is from Soil Science Society of America Journal 78 (2014): 337, doi:10.2136/sssaj2013.07.0291. Posted with permission.</p
    corecore