31 research outputs found

    Quantum feedback with weak measurements

    Get PDF
    The problem of feedback control of quantum systems by means of weak measurements is investigated in detail. When weak measurements are made on a set of identical quantum systems, the single-system density matrix can be determined to a high degree of accuracy while affecting each system only slightly. If this information is fed back into the systems by coherent operations, the single-system density matrix can be made to undergo an arbitrary nonlinear dynamics, including for example a dynamics governed by a nonlinear Schr\"odinger equation. We investigate the implications of such nonlinear quantum dynamics for various problems in quantum control and quantum information theory, including quantum computation. The nonlinear dynamics induced by weak quantum feedback could be used to create a novel form of quantum chaos in which the time evolution of the single-system wave function depends sensitively on initial conditions.Comment: 11 pages, TeX, replaced to incorporate suggestions of Asher Pere

    Translating Predictions of Zoonotic Viruses for Policymakers.

    No full text

    Nosocomial Transmission of Emerging Viruses via Aerosol-Generating Medical Procedures

    No full text
    Recent nosocomial transmission events of emerging and re-emerging viruses, including Ebola virus, Middle East respiratory syndrome coronavirus, Nipah virus, and Crimean–Congo hemorrhagic fever orthonairovirus, have highlighted the risk of nosocomial transmission of emerging viruses in health-care settings. In particular, concerns and precautions have increased regarding the use of aerosol-generating medical procedures when treating patients with such viral infections. In spite of increasing associations between aerosol-generating medical procedures and the nosocomial transmission of viruses, we still have a poor understanding of the risks of specific procedures and viruses. In order to identify which aerosol-generating medical procedures and emerging viruses pose a high risk to health-care workers, we explore the mechanisms of aerosol-generating medical procedures, as well as the transmission pathways and characteristics of highly pathogenic viruses associated with nosocomial transmission. We then propose how research, both in clinical and experimental settings, could advance current infection control guidelines

    Ecological Contexts of Index Cases and Spillover Events of Different Ebolaviruses

    No full text
    <div><p>Ebola virus disease afflicts both human and animal populations and is caused by four ebolaviruses. These different ebolaviruses may have distinct reservoir hosts and ecological contexts that determine how, where, and when different ebolavirus spillover events occur. Understanding these virus-specific relationships is important for preventing transmission of ebolaviruses from wildlife to humans. We examine the ecological contexts surrounding 34 human index case infections of ebolaviruses from 1976–2014. Determining possible sources of spillover from wildlife, characterizing the environment of each event, and creating ecological niche models to estimate habitats suitable for spillover, we find that index case infections of two ebolaviruses, Ebola virus and Sudan virus, have occurred under different ecological contexts. The index cases of Ebola virus infection are more associated with tropical evergreen broadleaf forests and consuming bushmeat than the cases of Sudan virus. Given these differences, we emphasize caution when generalizing across different ebolaviruses and that location and virus-specific ecological knowledge will be essential to unravelling how human and animal behavior lead to the emergence of Ebola virus disease.</p></div

    Monthly rainfall and temperature in SUDV and EBOV index case locations.

    No full text
    <p>The mean long-term monthly rainfall and temperature for the six SUDV spillover locations are depicted. For the twenty EBOV spillover locations, the mean rainfall and standard error of the mean are shown for locations that were in proximity to each other.</p

    Ebolavirus index cases and associated spillover events 1976–2014.

    No full text
    <p>Ebolavirus index cases and associated spillover events 1976–2014.</p
    corecore