1,255 research outputs found

    Alveolar macrophages and Toll-like receptor 4 mediate ventilated lung ischemia reperfusion injury in mice.

    Get PDF
    BackgroundIschemia-reperfusion (I-R) injury is a sterile inflammatory process that is commonly associated with diverse clinical situations such as hemorrhage followed by resuscitation, transient embolic events, and organ transplantation. I-R injury can induce lung dysfunction whether the I-R occurs in the lung or in a remote organ. Recently, evidence has emerged that receptors and pathways of the innate immune system are involved in recognizing sterile inflammation and overlap considerably with those involved in the recognition of and response to pathogens.MethodsThe authors used a mouse surgical model of transient unilateral left pulmonary artery occlusion without bronchial involvement to create ventilated lung I-R injury. In addition, they mimicked nutritional I-R injury in vitro by transiently depriving cells of all nutrients.ResultsCompared with sham-operated mice, mice subjected to ventilated lung I-R injury had up-regulated lung expression of inflammatory mediator messenger RNA for interleukin-1β, interleukin-6, and chemokine (C-X-C motif) ligand-1 and -2, paralleled by histologic evidence of lung neutrophil recruitment and increased plasma concentrations of interleukin-1β, interleukin-6, and high-mobility group protein B1 proteins. This inflammatory response to I-R required toll-like receptor-4 (TLR4). In addition, the authors demonstrated in vitro cooperativity and cross-talk between human macrophages and endothelial cells, resulting in augmented inflammatory responses to I-R. Remarkably, the authors found that selective depletion of alveolar macrophages rendered mice resistant to ventilated lung I-R injury.ConclusionsThe data reveal that alveolar macrophages and the pattern recognition receptor toll-like receptor-4 are involved in the generation of the early inflammatory response to lung I-R injury

    Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation.

    Get PDF
    Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness

    Histone deacetylases (HDACs) in XPC gene silencing and bladder cancer

    Get PDF
    Bladder cancer is one of the most common malignancies and causes hundreds of thousands of deaths worldwide each year. Bladder cancer is strongly associated with exposure to environmental carcinogens. It is believed that DNA damage generated by environmental carcinogens and their metabolites causes development of bladder cancer. Nucleotide excision repair (NER) is the major DNA repair pathway for repairing bulk DNA damage generated by most environmental carcinogens, and XPC is a DNA damage recognition protein required for initiation of the NER process. Recent studies demonstrate reduced levels of XPC protein in tumors for a majority of bladder cancer patients. In this work we investigated the role of histone deacetylases (HDACs) in XPC gene silencing and bladder cancer development. The results of our HDAC inhibition study revealed that the treatment of HTB4 and HTB9 bladder cancer cells with the HDAC inhibitor valproic acid (VPA) caused an increase in transcription of the XPC gene in these cells. The results of our chromatin immunoprecipitation (ChIP) studies indicated that the VPA treatment caused increased binding of both CREB1 and Sp1 transcription factors at the promoter region of the XPC gene for both HTB4 and HTB9 cells. The results of our immunohistochemistry (IHC) staining studies further revealed a strong correlation between the over-expression of HDAC4 and increased bladder cancer occurrence (p < 0.001) as well as a marginal significance of increasing incidence of HDAC4 positivity seen with an increase in severity of bladder cancer (p = 0.08). In addition, the results of our caspase 3 activation studies demonstrated that prior treatment with VPA increased the anticancer drug cisplatin-induced activation of caspase 3 in both HTB4 and HTB9 cells. All of these results suggest that the HDACs negatively regulate transcription of the XPC gene in bladder cancer cells and contribute to the severity of bladder tumors

    Neutral and Charged Inter-Valley Biexcitons in Monolayer MoSe2_2

    Full text link
    In atomically thin transition metal dichalcogenides (TMDs), reduced dielectric screening of the Coulomb interaction leads to strongly correlated many-body states, including excitons and trions, that dominate the optical properties. Higher-order states, such as bound biexcitons, are possible but are difficult to identify unambiguously using linear optical spectroscopy methods alone. Here, we implement polarization-resolved two-dimensional coherent spectroscopy to unravel the complex optical response of monolayer MoSe2_2 and identify multiple higher-order correlated states. Decisive signatures of neutral and charged inter-valley biexcitons appear in cross-polarized two-dimensional spectra as distinct resonances with respective ~20 meV and ~5 meV binding energies--similar to recent calculations using variational and Monte Carlo methods. A theoretical model taking into account the valley-dependent optical selection rules reveals the specific quantum pathways that give rise to these states. Inter-valley biexcitons identified here, comprised of neutral and charged excitons from different valleys, offer new opportunities for creating exotic exciton-polariton condensates and for developing ultrathin biexciton lasers and polarization-entangled photon sources

    Implantation and Gastrulation Abnormalities Characterize Early Embryonic Lethal Mouse Lines [preprint]

    Get PDF
    The period of development between the zygote and embryonic day 9.5 in mice includes multiple developmental milestones essential for embryogenesis. The preeminence of this period of development has been illustrated in loss of function studies conducted by the International Mouse Phenotyping Consortium (IMPC) which have shown that close to one third of all mouse genes are essential for survival to weaning age and a significant number of mutations cause embryo lethality before E9.5. Here we report a systematic analysis of 21 pre-E9.5 lethal lines generated by the IMPC. Analysis of pre- and post-implantation embryos revealed that the majority of the lines exhibit mutant phenotypes that fall within a window of development between implantation and gastrulation with few pre-implantation and no post-gastrulation phenotypes. Our study provides multiple genetic inroads into the molecular mechanisms that control early mammalian development and the etiology of human disease, in particular, the genetic bases of infertility and pregnancy loss. We propose a strategy for an efficient assessment of early embryonic lethal mutations that can be used to assign phenotypes to developmental milestones and outline the time of lethality

    The effects of C substitution and disorder on the field dependent critical current density in MgB2 with nano-SiC additions.

    Get PDF
    In this work, nano sized SiC powders were mixed with Mg and B and reacted by either a one-step insitu or two-step method resulted in different level of C substitution. X-ray diffraction shows the presence of Mg2Si signifying that the reaction between SiC and Mg occurred leading to the release of C in samples reacted in one-step method. Moreover, the much reduced value of a-axis indicates C substitution took place. Resistivity measurements showed higher intragrain scattering owing to a higher density of defects and/or impurities. These samples also show higher Hirr and Hc2 at 20 K in comparison to samples with mainly unreacted SiC (hence lower C substitution). More importantly, their Jc’s are more insensitive to high magnetic field (>4 T) at 6 K. However, at 20 K the effect of C content on Jc(H) is less pronounced. Finally, the order of magnitude of Jc(H) at both 6 K and 20 K is rather dominated by pinning

    Decreased lung function with mediation of blood parameters linked to e-waste lead and cadmium exposure in preschool children

    Get PDF
    Blood lead (Pb) and cadmium (Cd) levels have been associated with lower lung function in adults and smokers, but whether this also holds for children from electronic waste (e-waste) recycling areas is still unknown. To investigate the contribution of blood heavy metals and lung function levels, and the relationship among living area, the blood parameter levels, and the lung function levels, a total of 206 preschool children from Guiyu (exposed area), and Haojiang and Xiashan (reference areas) were recruited and required to undergo blood tests and lung function tests during the study period. Preschool children living in e-waste exposed areas were found to have a 1.37 mu g/dL increase in blood Pb, 1.18 mu g/L. increase in blood Cd, and a 41.00 x 10(9)/L increase in platelet counts, while having a 2.82 decrease in hemoglobin, 92 mL decrease in FVC and 86 mL decrease in FEV1. Each unit of hemoglobin (1 g/L) decline was associated with 5 mL decrease in FVC and 4 mL decrease in FEV1. We conclude that children living in e-waste exposed area have higher levels of blood Pb, Cd and platelets, and lower levels of hemoglobin and lung function. Hemoglobin can be a good predictor for lung function levels. (C) 2017 Elsevier Ltd. All rights reserved.</p
    corecore