2 research outputs found

    Modelling of Catechin Extraction from Red Grape Solids under Conditions That Simulate Red Wine Fermentation

    No full text
    Digital control systems are well established in many industries and could find application in the wine sector. Of critical importance to red wine quality, the efficient and targeted extraction of polyphenols from red grape solids during alcoholic fermentation could be a focus for automation. Smart technologies such as model predictive control (MPC) or fuzzy logic appear ideal for application in a complex process such as wine polyphenol extraction, but require mathematical models that accurately describe the system. The aim of this study was to derive and validate a model describing the extraction of catechin (a representative polyphenol) from red grape solids under simulated fermentation conditions. The impact of ethanol, fermentable sugar, and temperature on extraction rate was determined, with factor conditions chosen to emulate those present in industry practice. A first-order approach was used to generate an extraction model based on mass conservation that incorporated temperature and sugar dependency. Coefficients of determination (R2) for all test scenarios exceeded 0.94, indicating a good fit to the experimental data. Sensitivity analysis for the extraction rate and internal cross-validation showed the model to be robust, with a small standard error in cross-validation (SECV) of 0.11 and a high residual predictive deviation (RPD) of 17.68. The model that was developed is well suited to digital technologies where low computational overheads are desirable, and industrial application scenarios are presented for future implementation of the work

    Studies pertaining to the monitoring of volatile halogenated anaestheticsin breath by proton transfer reaction mass spectrometry

    No full text
    Post-operative isoflurane has been observed to be present in the end-tidal breath of patients who have undergone major surgery, for several weeks after the surgical procedures. A major new non-controlled, non-randomized, and open-label approved study will recruit patients undergoing various surgeries under different inhalation anaesthetics, with two key objectives, namely (1) to record the washout characteristics following surgery, and (2) to investigate the influence of a patient's health and the duration and type of surgery on elimination. In preparation for this breath study using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), it is important to identify first the analytical product ions that need to be monitored and under what operating conditions. In this first paper of this new research programme, we present extensive PTR-TOF-MS studies of three major anaesthetics used worldwide, desflurane (CF3CHFOCHF2), sevoflurane ((CF3)2CHOCH2F), and isoflurane (CF3CHClOCHF2) and a fourth one, which is used less extensively, enflurane (CHF2OCF2CHFCl), but is of interest because it is an isomer of isoflurane. Product ions are identified as a function of reduced electric field (E/N) over the range of approximately 80 Td to 210 Td, and the effects of operating the drift tube under 'normal' or 'humid' conditions on the intensities of the product ions are presented. To aid in the analyses, density functional theory (DFT) calculations of the proton affinities and the gas-phase basicities of the anaesthetics have been determined. Calculated energies for the ion-molecule reaction pathways leading to key product ions, identified as ideal for monitoring the inhalation anaesthetics in breath with a high sensitivity and selectivity, are also presented.(VLID)4826177Version of recor
    corecore