73 research outputs found

    Nematode eel parasite found inside acanthocephalan cysts - a "Trojan horse" strategy?

    Get PDF
    BackgroundThe invasive eel parasite Anguillicoloides crassus (syn. Anguillicola crassus) is considered one of the major causes for the decline of the European eel (Anguilla anguilla) panmictic population. It impairs the swim bladder function and reduces swimming performance of its host. The life cycle of this parasite involves different intermediate and paratenic hosts. Despite an efficient immune system of the paratenic fish hosts acting against infections with A. crassus, levels of parasitized eels remain high in European river systems. Recently, the round goby Neogobius melanostomus (Gobiidae) has become dominant in many rivers in Europe and is still spreading at a rapid pace. This highly invasive species might potentially act as an important, so far neglected paratenic fish host for A. crassus.MethodsBased on own observations and earlier single sightings of A. crassus in N. melanostomus, 60 fresh individuals of N. melanostomus were caught in the Rhine River and examined to assess the infection levels with metazoan parasites, especially A. crassus. Glycerin preparations were used for parasite identification.ResultsThe parasite most frequently found in N. melanostomus was the acanthocephalan Pomphorhynchus sp. (subadult stage) which occurred mainly encysted in the mesenteries and liver. Every third gobiid (P = 31.7%) was infected by A. crassus larvae (L3) which exclusively occurred inside the acanthocephalan cysts. No intact or degenerated larvae of A. crassus were detected elsewhere in the goby, neither in the body cavity and mesenteries nor in other organs. Affected cysts contained the acanthocephalan larvae and 1-12 (mI =3) living A. crassus larvae. Additionally, encysted larvae of the nematode Raphidascaris acus were detected in the gobies, but only in the body cavity and not inside the acanthocephalan cysts.ConclusionsBased on our observations, we suggest that A. crassus might actively bypass the immune response of N. melanostomus by invading the cysts of acanthocephalan parasites of the genus Pomphorhynchus using them as "Trojan horses". Providing that eels prey on the highly abundant round goby and that the latter transfers viable infective larvae of A. crassus, the new paratenic host might have a strong impact on the epidemiology of A. crassu

    Mesopredatory fishes from the subtropical upwelling region off NW-Africa characterised by their parasite fauna

    Get PDF
    Eastern boundary upwelling provides the conditions for high marine productivity in the Canary Current System off NW-Africa. Despite its considerable importance to fisheries, knowledge on this marine ecosystem is only limited. Here, parasites were used as indicators to gain insight into the host ecology and food web of two pelagic fish species, the commercially important species Trichiurus lepturus Linnaeus, 1758, and Nealotus tripes Johnson, 1865. Fish specimens of T. lepturus (n = 104) and N. tripes (n = 91), sampled from the Canary Current System off the Senegalese coast and Cape Verde Islands, were examined, collecting data on their biometrics, diet and parasitisation. In this study, the first parasitological data on N. tripes are presented. T. lepturus mainly preyed on small pelagic Crustacea and the diet of N. tripes was dominated by small mesopelagic Teleostei. Both host species were infested by mostly generalist parasites. The parasite fauna of T. lepturus consisted of at least nine different species belonging to six taxonomic groups, with a less diverse fauna of ectoparasites and cestodes in comparison to studies in other coastal ecosystems (Brazil Current and Kuriosho Current). The zoonotic nematode Anisakis pegreffii occurred in 23% of the samples and could pose a risk regarding food safety. The parasite fauna of N. tripes was composed of at least thirteen species from seven different taxonomic groups. Its most common parasites were digenean ovigerous metacercariae, larval cestodes and a monogenean species (Diclidophoridae). The observed patterns of parasitisation in both host species indicate their trophic relationships and are typical for mesopredators from the subtropical epi- and mesopelagic. The parasite fauna, containing few dominant species with a high abundance, represents the typical species composition of an eastern boundary upwelling ecosystem

    Abundance of organisms during a field experiment in the Wadden Sea off the island of Sylt, Northern Germany

    No full text
    The ring experiment has shown that biogenic habitat change from resident mussel beds to novel oyster reefs does not constitute a threat to species diversity but causes a shift in abundance of dominant associated species. Mussels and oysters may be functionally equivalent as consumers. However, the epibenthic biogenic structures they generate seem unfold subtle differences in habitat properties. Their community effects can only be explained in the context of the ecological web of species interactions. The differences in infauna and epifauna on mussel, mixed and oyster belts will have implications on foraging birds as well as on the relative proportions between mussels and oysters in the intertidal Wadden Sea in the years to come
    corecore