82 research outputs found
Association of ABCB1, 5-HT3B receptor and CYP2D6 genetic polymorphisms with ondansetron and metoclopramide antiemetic response in Indonesian cancer patients treated with highly emetogenic chemotherapy.
Our study shows that in Indonesian cancer patients treated with highly cytostatic emetogenic, carriership of the CTG haplotype of the ABCB1 gene is related to an increased risk of delayed chemotherapy-induced nausea and vomiting
Locomotion and muscle mass measures in a murine model of collagen-induced arthritis
Background: Rheumatoid arthritis (RA) is characterized by chronic poly-arthritis, synovial hyperplasia, erosive synovitis, progressive cartilage and bone destruction accompanied by a loss of body cell mass. This loss of cell mass, known as rheumatoid cachexia, predominates in the skeletal muscle and can in part be explained by a decreased physical activity. The murine collagen induced arthritis (CIA) model has been proven to be a useful model in RA research since it shares many immunological and pathological features with human RA. The present study explored the interactions between arthritis development, locomotion and muscle mass in the CIA model. Methods: CIA was induced in male DBA/1 mice. Locomotion was registered at different time points by a camera and evaluated by a computerized tracing system. Arthritis severity was detected by the traditionally used semi-quantitative clinical scores. The muscle mass of the hind-legs was detected at the end of the study by weighing. A methotrexate (MTX) intervention group was included to study the applicability of the locomotion and muscle mass for testing effectiveness of interventions in more detail. Results: There is a strong correlation between clinical arthritis and locomotion. The correlations between muscle mass and locomotion or clinical arthritis were less pronounced. MTX intervention resulted in an improvement of disease severity accompanied by an increase in locomotion and muscle mass. Conclusion: The present data demonstrate that registration of locomotion followed by a computerized evaluation of the movements is a simple non invasive quantitative method to define disease severity and evaluate effectiveness of therapeutic agents in the CIA model.
Expanding the genetic and phenotypic spectrum of ACTA2-related vasculopathies in a Dutch cohort
Purpose: Heterozygous pathogenic/likely pathogenic (P/LP) variants in the ACTA2 gene confer a high risk for thoracic aortic aneurysms and aortic dissections. This retrospective multicenter study elucidates the clinical outcome of ACTA2-related vasculopathies. Methods: Index patients and relatives with a P/LP variant in ACTA2 were included. Data were collected through retrospective review of medical records using a standardized questionnaire. Results: A total of 49 individuals from 28 families participated in our study. In total, 20 different ACTA2 variants were detected. Aortic events occurred in 65% of the cases (78.6% index patients and 47.6% relatives). Male sex and hypertension emerged as significantly associated with aortic events. Of 20 individuals, 5 had an aortic diameter of <45 mm (1.77 inches) at the time of the type A dissection. Mean age at first aortic event was 49.0 ± 12.4 years. Severe surgical complications for type A and type B dissection occurred in 25% and 16.7% of the cases and in-hospital mortality rates were 9.5% and 0%, respectively. Conclusion: P/LP ACTA2 variants are associated with an increased risk for an aortic event and age-related penetrance, which emphasizes the importance of early recognition of the disease. Caregivers should be aware of the risk for aortic dissections, even in individuals with aortic diameters within the normal range
Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors
Purpose Telatinib is an orally active small-molecule tyrosine kinase inhibitor of kinase insert domain receptor (KDR; VEGFR-2) and fms-related tyrosine kinase 4 (FLT4; VEGFR-3). This study aims at the identification of relationships between single nucleotide polymorphisms (SNPs) in genes encoding for transporter proteins and pharmacokinetic parameters in order to clarify the significant interpatient variability in drug exposure. In addition, the potential relationship between target receptor polymorphisms and toxicity of telatinib is explored. Methods Blood samples from 33 patients enrolled in a phase I dose-escalation study of telatinib were analyzed. For correlation with dose normalized AUC(0–12), ATP-binding cassette (ABC) B1 (ABCB1), ABCC1, and ABCG2 were the genes selected. For correlation with telatinib toxicity, selected genes were the drug target genes KDR and FLT4. Results No association between dose normalized AUC(0–12) and drug transporter protein polymorphisms was observed. In addition, no association between toxicity and KDR or FLT4 genotype or haplotype was seen. Conclusions Our pharmacogenetic analysis could not reveal a correlation between relevant gene polymorphisms and clinical and pharmacokinetic observations of telatinib
Lack of evidence for a causal role of CALR3 in monogenic cardiomyopathy
The pathogenicity of previously published disease-associated genes and variants is sometimes questionable. Large-scale, population-based sequencing studies have uncovered numerous false assignments of pathogenicity. Misinterpretation of sequence variants may have serious implications for the patients and families involved, as genetic test results are increasingly being used in medical decision making. In this study, we assessed the role of the calreticulin-3 gene (CALR3) in cardiomyopathy. CALR3 has been included in several cardiomyopathy gene panels worldwide. Its inclusion is based on a single publication describing two missense variants in patients with hypertrophic cardiomyopathy. In our national cardiomyopathy cohort (n = 6154), we identified 17 unique, rare heterozygous CALR3 variants in 48 probands. Overall, our patient cohort contained a significantly higher number of rare CALR3 variants compared to the ExAC population (p = 0.0036). However, after removing a potential Dutch founder variant, no statistically significant difference was found (p = 0.89). In nine probands, the CALR3 variant was accompanied by a disease-causing variant in another, well-known cardiomyopathy gene. In three families, the CALR3 variant did not segregate with the disease. Furthermore, we could not demonstrate calreticulin-3 protein expression in myocardial tissues at various ages. On the basis of these findings, it seems highly questionable that variants in CALR3 are a monogenic cause of cardiomyopathy
Wt1 is required for cardiovascular progenitor cell formation through transcriptional control of Snail and E-cadherin
Epicardial epithelial-mesenchymal transition (EMT) is hypothesized to generate cardiovascular progenitor cells that differentiate into various cell types, including coronary smooth muscle and endothelial cells, perivascular and cardiac interstitial fibroblasts and cardiomyocytes. Here we show that an epicardial-specific knockout of Wt1 leads to a reduction of mesenchymal progenitor cells and their derivatives. We demonstrate that Wt1 is essential for repression of the epithelial phenotype in epicardial cells and during Embryonic Stem (ES) cell differentiation, through direct transcriptional regulation of Snail (Snai1) and E-cadherin (Cdh1), two of the major mediators of EMT. Some mesodermal lineages fail to form in Wt1 null embryoid bodies but this effect is rescued by the expression of Snai1, underlining the importance of EMT in generating these differentiated cells. These new insights into the molecular mechanisms regulating cardiovascular progenitor cells and EMT will shed light on the pathogenesis of heart diseases and may help the development of cell based therapies
Candidate gene resequencing in a large bicuspid aortic valve-associated thoracic aortic aneurysm cohort: SMAD6 as an important contributor
Bicuspid aortic valve (BAV) is the most common congenital heart defect. Although many BAV patients remain asymptomatic, at least 20% develop thoracic aortic aneurysm (TAA). Historically, BAV-related TAA was considered as a hemodynamic consequence of the valve defect. Multiple lines of evidence currently suggest that genetic determinants contribute to the pathogenesis of both BAV and TAA in affected individuals. Despite high heritability, only very few genes have been linked to BAV or BAV/TAA, such as NOTCH1, SMAD6, and MAT2A. Moreover, they only explain a minority of patients. Other candidate genes have been suggested based on the presence of BAV in knockout mouse models (e.g., GATA5, NOS3) or in syndromic (e.g., TGFBR1/2, TGFB2/3) or non-syndromic (e.g., ACTA2) TAA forms. We hypothesized that rare genetic variants in these genes may be enriched in patients presenting with both BAV and TAA. We performed targeted resequencing of 22 candidate genes using Haloplex target enrichment in a strictly defined BAV/TAA cohort (n = 441; BAV in addition to an aortic root or ascendens diameter = 4.0 cm in adults, or a Z-score = 3 in children) and in a collection of healthy controls with normal echocardiographic evaluation (n = 183). After additional burden analysis against the Exome Aggregation Consortium database, the strongest candidate susceptibility gene was SMAD6 (p = 0.002), with 2.5% (n = 11) of BAV/TAA patients harboring causal variants, including two nonsense, one in-frame deletion and two frameshift mutations. All six missense mutations were located in the functionally important MH1 and MH2 domains. In conclusion, we report a significant contribution of SMAD6 mutations to the etiology of the BAV/TAA phenotype
Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib
Objectives Danusertib is a serine/threonine kinase inhibitor of multiple kinases, including aurora-A, B, and C. This explorative study aims to identify possible relationships between single nucleotide polymorphisms in genes coding for drug metabolizing enzymes and transporter proteins and clearance of danusertib, to clarify the interpatient variability in exposure. In addition, this study explores the relationship between target receptor polymorphisms and toxicity of danusertib. Methods For associations with clearance, 48 cancer patients treated in a phase I study were analyzed for ABCB1, ABCG2 and FMO3 polymorphisms. Association analyses between neutropenia and drug target receptors, including KDR, RET, FLT3, FLT4, AURKB and AURKA, were performed in 30 patients treated at recommended phase II dose-levels in three danusertib phase I or phase II trials. Results No relationships between danusertib clearance and drug metabolizing enzymes and transporter protein polymorphisms were found. Only, for the one patient with FMO3 18281AA polymorphism, a significantly higher clearance was noticed, compared to patients carrying at least 1 wild type allele. No effect of target receptor genotypes or haplotypes on neutropenia was observed. Conclusions As we did not find any major correlations between pharmacogenetic variability in the studied enzymes and transporters and pharmacokinetics nor toxicity, it is unlikely that danusertib is highly susceptible for pharmacogenetic variation. Therefore, no dosing alterations of danusertib are expected in the future, based on the polymorphisms studied. However, the relationship between FMO3 polymorphisms and clearance of danusertib warrants further research, as we could study only a small group of patients
Lack of evidence for a causal role of CALR3 in monogenic cardiomyopathy
The pathogenicity of previously published disease-associated genes and variants is sometimes questionable. Large-scale, population-based sequencing studies have uncovered numerous false assignments of pathogenicity. Misinterpretation of sequence variants may have serious implications for the patients and families involved, as genetic test results are increasingly being used in medical decision making. In this study, we assessed the role of the calreticulin-3 gene (CALR3) in cardiomyopathy. CALR3 has been included in several cardiomyopathy gene panels worldwide. Its inclusion is based on a single publication describing two missense variants in patients with hypertrophic cardiomyopathy. In our national cardiomyopathy cohort (n = 6154), we identified 17 unique, rare heterozygous CALR3 variants in 48 probands. Overall, our patient cohort contained a significantly higher number of rare CALR3 variants compared to the ExAC population (p = 0.0036). However, after removing a potential Dutch founder variant, no statistically significant difference was found (p = 0.89). In nine probands, the CALR3 variant was accompanied by a disease-causing variant in another, well-known cardiomyopathy gene. In three families, the CALR3 variant did not segregate with the disease. Furthermore, we could not demonstrate calreticulin-3 protein expression in myocardial tissues at various ages. On the basis of these findings, it seems highly questionable that variants in CALR3 are a monogenic cause of cardiomyopathy
- …