10 research outputs found

    Classification and energetics of the base-phosphate interactions in RNA

    Get PDF
    Structured RNA molecules form complex 3D architectures stabilized by multiple interactions involving the nucleotide base, sugar and phosphate moieties. A significant percentage of the bases in structured RNA molecules in the Protein Data Bank (PDB) hydrogen-bond with phosphates of other nucleotides. By extracting and superimposing base-phosphate (BPh) interactions from a reduced-redundancy subset of 3D structures from the PDB, we identified recurrent phosphate-binding sites on the RNA bases. Quantum chemical calculations were carried out on model systems representing each BPh interaction. The calculations show that the centers of each cluster obtained from the structure superpositions correspond to energy minima on the potential energy hypersurface. The calculations also show that the most stable phosphate-binding sites occur on the Watson–Crick edge of guanine and the Hoogsteen edge of cytosine. We modified the ‘Find RNA 3D' (FR3D) software suite to automatically find and classify BPh interactions. Comparison of the 3D structures of the 16S and 23S rRNAs of Escherichia coli and Thermus thermophilus revealed that most BPh interactions are phylogenetically conserved and they occur primarily in hairpin, internal or junction loops or as part of tertiary interactions. Bases that form BPh interactions, which are conserved in the rRNA 3D structures are also conserved in homologous rRNA sequence alignments

    Classification and energetics of the base-phosphate interactions in RNA

    Get PDF
    Structured RNA molecules form complex 3D architectures stabilized by multiple interactions involving the nucleotide base, sugar and phosphate moieties. A significant percentage of the bases in structured RNA molecules in the Protein Data Bank (PDB) hydrogen-bond with phosphates of other nucleotides. By extracting and superimposing base-phosphate (BPh) interactions from a reduced-redundancy subset of 3D structures from the PDB, we identified recurrent phosphate-binding sites on the RNA bases. Quantum chemical calculations were carried out on model systems representing each BPh interaction. The calculations show that the centers of each cluster obtained from the structure superpositions correspond to energy minima on the potential energy hypersurface. The calculations also show that the most stable phosphate-binding sites occur on the Watson–Crick edge of guanine and the Hoogsteen edge of cytosine. We modified the ‘Find RNA 3D' (FR3D) software suite to automatically find and classify BPh interactions. Comparison of the 3D structures of the 16S and 23S rRNAs of Escherichia coli and Thermus thermophilus revealed that most BPh interactions are phylogenetically conserved and they occur primarily in hairpin, internal or junction loops or as part of tertiary interactions. Bases that form BPh interactions, which are conserved in the rRNA 3D structures are also conserved in homologous rRNA sequence alignments

    Formamide-Based Prebiotic Synthesis of Nucleobases: A Kinetically Accessible Reaction Route

    No full text
    Synthesis of nucleobases in nonaqueous environments is an alternative way for the emergence of terrestrial life, which could solve the fundamental problem connected to the hydrolytic instability of nucleic acid components in an aqueous environment. In this contribution, we present a plausible reaction route for the prebiotic synthesis of nucleobases in formamide, which does not require participation of the formamide trimer and aminoimidazole-carbonitrile intermediates. The computed activation energy of the proposed pathway is noticeably higher than that of the HCN-based synthetic route, but it is still feasible under the experimental conditions of the Saladino synthesis. We show that, albeit both the pyrimidine and purine ring formation utilizes the undissociated form of formamide, the dehydration product of formamide, HCN, may also play a key role in the mechanism. The rate determining step of the entire reaction path is the cyclization of the diaza-pentanimine precursor. The subsequent formation of the imidazole ring proceeds with a moderate activation energy. Our calculations thus demonstrate that the experimentally suggested reaction path without the involvement of aminoimidazole-carbonitrile intermediates is also a viable alternative for the nonaqueous synthesis of nucleobases

    On the Road from Formamide Ices to Nucleobases: IR-Spectroscopic Observation of a Direct Reaction between Cyano Radicals and Formamide in a High-Energy Impact Event

    No full text
    The formamide-based synthesis of nucleic acids is considered as a nonaqueous scenario for the emergence of biomolecules from inorganic matter. In the current study, we scrutinized the chemical composition of formamide ices mixed with an FeNi meteorite material treated with laser-induced dielectric breakdown plasma created in nitrogen buffer gas. These experiments aimed to capture the first steps of those chemical transformations that may lead to the formation of nucleobases during the impact of an extraterrestrial icy body containing formamide on an early Earth atmosphere. High-resolution FT-IR spectroscopy combined with quantum chemical calculations was used to analyze the volatile fraction of the products formed during such an event. We have found that the spectrum of the evaporated formamide ices is dominated by the spectral signatures of the dimeric form of formamide. Upon exposure to laser sparks, new well-defined bands appear in the spectrum centered at ∼820, ∼995, and ∼1650 cm<sup>–1</sup>. On the basis of quantum chemical calculations, these bands can be assigned to the absorptions of 2-amino-2-hydroxy-acetonitrile and to 2-amino-2-hydroxy-malononitrile, which are formed in a direct reaction between formamide and CN<sup>•</sup> radicals upon the high-energy impact event. We also show that there is an exergonic reaction route via these intermediates leading to diaminomaleonitrile, which is generally considered to play a key role in the synthesis of nucleobases

    On the Geometry and Electronic Structure of the As-DNA Backbone

    No full text
    High-level quantum chemical calculations have been applied to investigate the geometry and electronic properties of the arsenate analogue of the DNA backbone. The optimized geometries as well as hyperconjugation effects along the C3′O3′XO5′C5′ linkage (X = P,As) exhibit a remarkable similarity for both arsenates and phosphates. This suggests that arsenates, if present, might serve as a potential substitute for phosphates in the DNA backbone

    Untemplated Nonenzymatic Polymerization of 3′,5′cGMP: A Plausible Route to 3′,5′-Linked Oligonucleotides in Primordia

    No full text
    The high-energy 3′,5′ phosphodiester linkages conserved in 3′,5′ cyclic GMPs offer a genuine solution for monomer activation required by the transphosphorylation reactions that could lead to the emergence of the first simple oligonucleotide sequences on the early Earth. In this work we provide an in-depth characterization of the effect of the reaction conditions on the yield of the polymerization reaction of 3′,5′ cyclic GMPs both in aqueous environment as well as under dehydrating conditions. We show that the threshold temperature of the polymerization is about 30 °C lower under dehydrating conditions than in solution. In addition, we present a plausible exergonic reaction pathway for the polymerization reaction, which involves transient formation of anionic centers at the O3′ positions of the participating riboses. We suggest that excess Na<sup>+</sup> cations inhibit the polymerization reaction because they block the anionic mechanism via neutralizing the negatively charged O3′. Our experimental findings are compatible with a prebiotic scenario, where gradual desiccation of the environment could induce polymerization of 3′,5′ cyclic GMPs synthesized in liquid

    Untemplated Nonenzymatic Polymerization of 3′,5′cGMP: A Plausible Route to 3′,5′-Linked Oligonucleotides in Primordia

    No full text
    The high-energy 3′,5′ phosphodiester linkages conserved in 3′,5′ cyclic GMPs offer a genuine solution for monomer activation required by the transphosphorylation reactions that could lead to the emergence of the first simple oligonucleotide sequences on the early Earth. In this work we provide an in-depth characterization of the effect of the reaction conditions on the yield of the polymerization reaction of 3′,5′ cyclic GMPs both in aqueous environment as well as under dehydrating conditions. We show that the threshold temperature of the polymerization is about 30 °C lower under dehydrating conditions than in solution. In addition, we present a plausible exergonic reaction pathway for the polymerization reaction, which involves transient formation of anionic centers at the O3′ positions of the participating riboses. We suggest that excess Na<sup>+</sup> cations inhibit the polymerization reaction because they block the anionic mechanism via neutralizing the negatively charged O3′. Our experimental findings are compatible with a prebiotic scenario, where gradual desiccation of the environment could induce polymerization of 3′,5′ cyclic GMPs synthesized in liquid

    Understanding the Sequence Preference of Recurrent RNA Building Blocks Using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform

    No full text
    Folded RNA molecules are shaped by an astonishing variety of highly conserved noncanonical molecular interactions and backbone topologies. The dinucleotide platform is a widespread recurrent RNA modular building submotif formed by the side-by-side pairing of bases from two consecutive nucleotides within a single strand, with highly specific sequence preferences. This unique arrangement of bases is cemented by an intricate network of noncanonical hydrogen bonds and facilitated by a distinctive backbone topology. The present study investigates the gas-phase intrinsic stabilities of the three most common RNA dinucleotide platforms5′-GpU-3′, ApA, and UpCvia state-of-the-art quantum-chemical (QM) techniques. The mean stability of base–base interactions decreases with sequence in the order GpU > ApA > UpC. Bader’s atoms-in-molecules analysis reveals that the N2(G)···O4(U) hydrogen bond of the GpU platform is stronger than the corresponding hydrogen bonds in the other two platforms. The mixed-pucker sugar–phosphate backbone conformation found in most GpU platforms, in which the 5′-ribose sugar (G) is in the C2′-endo form and the 3′-sugar (U) in the C3′-endo form, is intrinsically more stable than the standard A-RNA backbone arrangement, partially as a result of a favorable O2′···O2P intraplatform interaction. Our results thus validate the hypothesis of Lu et al. (Lu, X.-J.; et al. <i>Nucleic Acids Res</i>. <b>2010</b>, <i>38</i>, 4868–4876) that the superior stability of GpU platforms is partially mediated by the strong O2′···O2P hydrogen bond. In contrast, ApA and especially UpC platform-compatible backbone conformations are rather diverse and do not display any characteristic structural features. The average stabilities of ApA and UpC derived backbone conformers are also lower than those of GpU platforms. Thus, the observed structural and evolutionary patterns of the dinucleotide platforms can be accounted for, to a large extent, by their intrinsic properties, as described by modern QM calculations. In contrast, we show that the dinucleotide platform is not properly described in the course of atomistic explicit-solvent simulations. Our work also gives methodological insights into QM calculations of experimental RNA backbone geometries. Such calculations are inherently complicated by rather large data and refinement uncertainties in the available RNA experimental structures, which often preclude reliable energy computations
    corecore