3,789 research outputs found
Pioneer 10 and Voyager observations of the interstellar medium in scattered emission of the He584 A and H Lya 1216 A lines
The combination of Pioneer photometric and Voyager spectrometric observations of EUV interstellar-interplanetary emissions in the region beyond 5 A was applied to a determination of atomic hydrogen and helium densities. These density estimates obtained from direct measurement of scattered radiation depend on absolute calibration of the instruments in the same way as other earlier determinations based on the same method. However, the spacecraft data were combined with daily full sun averages of the H Lyman 1216 A line obtained by the Solar Mesospheric Explorer satellite to obtain a measure of atomic hydrogen density independent of instrument absolute calibration. The method depends on observations of long and short term temporal variability of the solar line over a one year period, and the fact that the ISM is optically thick. The density estimates from preliminary work on these observations are H = 0.12 cu cm and H = .016 cu cm, giving a density ratio close to the cosmic abundance value in contrast to some earlier results indicating a depletion of atomic hydrogen. Estimates were obtained of galactic background emissions in the signals of both spacecraft
Canonical quantization of macroscopic electrodynamics in a linear, inhomogeneous magneto-electric medium
We present a canonical quantization of macroscopic electrodynamics. The
results apply to inhomogeneous media with a broad class of linear
magneto-electric responses which are consistent with the Kramers-Kronig and
Onsager relations. Through its ability to accommodate strong dispersion and
loss, our theory provides a rigorous foundation for the study of quantum
optical processes in structures incorporating metamaterials, provided these may
be modeled as magneto-electric media. Previous canonical treatments of
dielectric and magneto-dielectric media have expressed the electromagnetic
field operators in either a Green function or mode expansion representation.
Here we present our results in the mode expansion picture with a view to
applications in guided wave and cavity quantum optics.Comment: Submitted to Physical Review A 24/07/201
Employee Age as a Moderator of the Relationship Between Ambition and Work Role Affect
Past research has demonstrated a negative relationship between ambition, or the desire to get ahead, and job satisfaction. In the present paper, age was hypothesized to moderate the relationship between ambition and job satisfaction such that the relationship between ambition and satisfaction is more negative for older employees than for younger employees. Three studies, with three criterion variables (promotion satisfaction, extrinsic job satisfaction, overall job satisfaction), were used to test the hypothesis. Results indicated support for the hypothesized interaction. The discussion focuses on the implications of the results for organizational and individual career management strategies
Direct UV observations of the circumstellar envelope of alpha Orionis
Observations were made in the IUE LWP camera, low dispersion mode, with alpha Ori being offset various distances from the center of the Long Wavelength Large Aperture along its major axis. Signal was acquired at all offset positions and is comprised of unequal components of background/dark counts, telescope-scattered light, and scattered light emanating from the extended circumstellar shell. The star is known from optical and infrared observations to possess an extended, arc-minute sized, shell of cool material. Attempts to observe this shell with the IUE are described, although the deconvolution of the stellar signal from the telescope scattered light requires further calibration effort
Electron density in the quiet solar coronal transition region from SoHO/SUMER measurements of S VI line radiance and opacity
Context: The sharp temperature and density gradients in the coronal
transition region are a challenge for models and observations.
Aims: We set out to get linearly- and quadratically-weighted average electron
densities in the region emitting the S VI lines, using the observed opacity and
the emission measure of these lines.
Methods: We analyze SoHO/SUMER spectroscopic observations of the S VI lines,
using the center-to-limb variations and radiance ratios to derive the opacity.
We also use the Emission Measure derived from radiance at disk center.
Results: We get an opacity at S VI line center of the order of 0.05. The
resulting average electron density is 2.4 10^16 m^-3 at T = 2 10^5 K. This
value is higher than the values obtained from radiance measurements.
Conversely, taking a classical value for the density leads to a too high value
of the thickness of the emitting layer.
Conclusions: The pressure derived from the Emission Measure method compares
well with previous determinations and implies a low opacity of 5 10^-3 to
10^-2. The fact that a direct derivation leads to a much higher opacity remains
unexplained, despite tentative modeling of observational biases. Further
measurements need to be done, and more realistic models of the transition
region need to be used.Comment: 11 pages, 9 figure
Large-Amplitude, Pair-Creating Oscillations in Pulsar and Black Hole Magnetospheres
A time-dependent model for pair creation in a pulsar magnetosphere is
developed. It is argued that the parallel electric field that develops in a
charge-starved region (a gap) of a pulsar magnetosphere oscillates with large
amplitude. Electrons and positrons are accelerated periodically and the
amplitude of the oscillations is assumed large enough to cause creation of
upgoing and downgoing pairs at different phases of the oscillation. With a
charge-starved initial condition, we find that the oscillations result in
bursts of pair creation in which the pair density rises exponentially with
time. The pair density saturates at , where is the parallel electric field in the
charge-starved initial state, and is the Lorentz factor for
effec tive pair creation. The frequency of oscillations following the pair
creation burst is given roughly by . A positive feedback keeps the system stable, such that the average pair
creation rate balances the loss rate due to pairs escaping the magnetosphere.Comment: 21 pages, 6 figures, ApJ submitte
Pioneer 10 and Voyager Observations of the Interstellar Medium in Scattered Emission of the H 584 A and H Lya 1216 A Lines
The combination of Pioneer photometric and Voyager spectrometric observations of EUV interstellar-interplanetary emissions in the region beyond 5 AU have been applied to a determination of atomic hydrogen and helium densities. These density estimates obtained from direct measurement of scattered radiation depend on absolute calibration of the instruments, in the same way as other earlier determinations based on the same method. However. we have combined the spacecraft data with daily full sun averages of the H Lya 1216 A line obtained by the Solar Mesospheric Explorer (SME) satellite, to obtain a measure of atomic hydrogen density independent of instrument absolute calibration. The method depends on observations of long and short term temporal variability of the solar line over a 1 year period, and the fact that the ISM is optically thick. The density estimates from preliminary work on these observations are (H) = 0.12 cm(sup 2) and (He) = .016 cm(sup 2), giving a density ratio close to the cosmic abundance value, in contrast to some earlier results indicating a depletion of atomic hydrogen. We have obtained estimates of galactic background emissions in the signals of both spacecraft
- …