5,906 research outputs found

    Implications of non-feasible transformations among icosahedral hh orbitals

    Get PDF
    The symmetric group S6S_6 that permutes the six five-fold axes of an icosahedron is introduced to go beyond the simple rotations that constitute the icosahedral group II. Owing to the correspondence hdh\leftrightarrow d, the calculation of the Coulomb energies for the icosahedral configurations hNh^N based on the sequence O(5)S6S5IO(5) \supset S_6 \supset S_5 \supset I can be brought to bear on Racah's classic theory for the atomic d shell based on SO(5)SOL(3)ISO(5) \supset SO_L(3) \supset I. Among the elements of S6S_6 is the kaleidoscope operator K{\cal K} that rotates the weight space of SO(5) by π/2\pi/2. Its use explains some puzzling degeneracies in d^3 involving the spectroscopic terms ^2P, ^2F, ^2G and ^2H.Comment: Tentatively scheduled to appear in Physical Preview Letters Apr 5, 99. Revtex, 1 ps figur

    A pilot level decision analysis of thermionic reactor development strategy for nuclear electric propulsion

    Get PDF
    The development policy for thermionic reactors to provide electric propulsion and power for space exploration was analyzed to develop a logical procedure for selecting development alternatives that reflect the technical feasibility, JPL/NASA project objectives, and the economic environment of the project. The partial evolution of a decision model from the underlying philosophy of decision analysis to a deterministic pilot phase is presented, and the general manner in which this decision model can be employed to examine propulsion development alternatives is illustrated

    More on coupling coefficients for the most degenerate representations of SO(n)

    Full text link
    We present explicit closed-form expressions for the general group-theoretical factor appearing in the alpha-topology of a high-temperature expansion of SO(n)-symmetric lattice models. This object, which is closely related to 6j-symbols for the most degenerate representation of SO(n), is discussed in detail.Comment: 9 pages including 1 table, uses IOP macros Update of Introduction and Discussion, References adde

    New methodology for assessing the probability of contaminating Mars

    Get PDF
    Methodology is proposed to assess the probability that the planet Mars will be contaminated by terrestrial microorganisms aboard a spacecraft. The present NASA methods are extended to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Different types of microbial release are distinguished, and for each release mechanism a probability of growth is computed. Using this new methodology, an assessment was carried out for the 1975 Viking landings on Mars. The resulting probability of contamination for each Viking lander is 6 x 10 to the -6 power, and is amenable to revision as additional information becomes available

    Assessment of the probability of contaminating Mars

    Get PDF
    New methodology is proposed to assess the probability that the planet Mars will by biologically contaminated by terrestrial microorganisms aboard a spacecraft. Present NASA methods are based on the Sagan-Coleman formula, which states that the probability of contamination is the product of the expected microbial release and a probability of growth. The proposed new methodology extends the Sagan-Coleman approach to permit utilization of detailed information on microbial characteristics, the lethality of release and transport mechanisms, and of other information about the Martian environment. Three different types of microbial release are distinguished in the model for assessing the probability of contamination. The number of viable microbes released by each mechanism depends on the bio-burden in various locations on the spacecraft and on whether the spacecraft landing is accomplished according to plan. For each of the three release mechanisms a probability of growth is computed, using a model for transport into an environment suited to microbial growth

    Scattering and absorption of ultracold atoms by nanotubes

    Full text link
    We investigate theoretically how cold atoms, including Bose-Einstein condensates, are scattered from, or absorbed by nanotubes with a view to analysing recent experiments. In particular we consider the role of potential strength, quantum reflection, atomic interactions and tube vibrations on atom loss rates. Lifshitz theory calculations deliver a significantly stronger scattering potential than that found in experiment and we discuss possible reasons for this. We find that the scattering potential for dielectric tubes can be calculated to a good approximation using a modified pairwise summation approach, which is efficient and easily extendable to arbitrary geometries. Quantum reflection of atoms from a nanotube may become a significant factor at low temperatures, especially for non-metallic tubes. Interatomic interactions are shown to increase the rate at which atoms are lost to the nanotube and lead to non-trivial dynamics. Thermal nanotube vibrations do not significantly increase loss rates or reduce condensate fractions, but lower frequency oscillations can dramatically heat the cloud.Comment: 7 pages, 4 figure

    Quantum reflection of ultracold atoms from thin films, graphene, and semiconductor heterostructures

    Full text link
    We show that thin dielectric films can be used to enhance the performance of passive atomic mirrors by enabling quantum reflection probabilities of over 90% for atoms incident at velocities ~1 mm/s, achieved in recent experiments. This enhancement is brought about by weakening the Casimir-Polder attraction between the atom and the surface, which induces the quantum reflection. We show that suspended graphene membranes also produce higher quantum reflection probabilities than bulk matter. Temporal changes in the electrical resistance of such membranes, produced as atoms stick to the surface, can be used to monitor the reflection process, non-invasively and in real time. The resistance change allows the reflection probability to be determined purely from electrical measurements without needing to image the reflected atom cloud optically. Finally, we show how perfect atom mirrors may be manufactured from semiconductor heterostructures, which employ an embedded two-dimensional electron gas to tailor the atom-surface interaction and so enhance the reflection by classical means.Comment: 8 pages, 4 figure

    Cold atoms near superconductors: Atomic spin coherence beyond the Johnson noise limit

    Full text link
    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom / solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.Comment: Major revisions of the text for submission to New Journal of Physics 8 pages, 4 figure
    corecore