322 research outputs found

    Loom: Exploiting Weight and Activation Precisions to Accelerate Convolutional Neural Networks

    Full text link
    Loom (LM), a hardware inference accelerator for Convolutional Neural Networks (CNNs) is presented. In LM every bit of data precision that can be saved translates to proportional performance gains. Specifically, for convolutional layers LM's execution time scales inversely proportionally with the precisions of both weights and activations. For fully-connected layers LM's performance scales inversely proportionally with the precision of the weights. LM targets area- and bandwidth-constrained System-on-a-Chip designs such as those found on mobile devices that cannot afford the multi-megabyte buffers that would be needed to store each layer on-chip. Accordingly, given a data bandwidth budget, LM boosts energy efficiency and performance over an equivalent bit-parallel accelerator. For both weights and activations LM can exploit profile-derived perlayer precisions. However, at runtime LM further trims activation precisions at a much smaller than a layer granularity. Moreover, it can naturally exploit weight precision variability at a smaller granularity than a layer. On average, across several image classification CNNs and for a configuration that can perform the equivalent of 128 16b x 16b multiply-accumulate operations per cycle LM outperforms a state-of-the-art bit-parallel accelerator [1] by 4.38x without any loss in accuracy while being 3.54x more energy efficient. LM can trade-off accuracy for additional improvements in execution performance and energy efficiency and compares favorably to an accelerator that targeted only activation precisions. We also study 2- and 4-bit LM variants and find the the 2-bit per cycle variant is the most energy efficient

    Designing object-oriented interfaces for medical data repositories

    Get PDF
    Thesis (S.B. and M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (leaves 113-116).by Patrick J. McCormick.S.B.and M.Eng

    Machine Learning-Based Signal Degradation Models for Attenuated Underwater Optical Communication OAM Beams

    Get PDF
    Signal attenuation in underwater communications is a problem that degrades classification performance. Several novel CNN-based (SMART) models are developed to capture the physics of the attenuation process. One model is built and trained using automatic differentiation and another uses the radon cumulative distribution transform. These models are inserted in the classifier training pipeline. It is shown that including these attenuation models in classifier training significantly improves classification performance when the trained model is tested with environmentally attenuated images. The improved classification accuracy will be important in future OAM underwater optical communication applications

    The Hydrogen Epoch of Reionization Array Dish II: Characterization of Spectral Structure with Electromagnetic Simulations and its science Implications

    Get PDF
    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish's design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA's suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA's ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at relatively low cost. We find that electromagnetic resonances in the HERA feed's cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (−40-40 dB at 200 ns) which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k∥≲0.2k_\parallel \lesssim 0.2 hhMpc−1^{-1}, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.Comment: Accepted to ApJ, 18 pages, 17 Figures. Replacement matches accepted manuscrip
    • …
    corecore