340 research outputs found
Two Higgs Doublets Model in Gauge-Higgs Unification framework
We discuss the realization of two Higgs doublets model in the framework of 6
dimensional Gauge-Higgs Unification model with a simple Lie group G_M. Two
Higgs SU(2)_L doublets can emerge at the low energy effective theory, and the
quartic coupling terms in the scalar potential, essential for the electroweak
symmetry breaking, are now G_M gauge invariant and permissive. A realistic two
Higgs doublets model can possibly be obtained only when two of the root vectors
associated with the would-be Higgs doublets and the root vector for SU(2)_L
form an isosceles triangle with vertex angle either of Pi/3, Pi/2, or 2Pi/3.
Moreover, depending on G_M, the scalar potential of resulting two Higgs
doublets model can admit only a few limited forms. The mass spectrum of the
physical Higgs and the weak mixing angle are briefly discussed.Comment: 5 Pages and 1 figure. Matches published version in PR
Weak Mixing Angle and Higgs Mass in Gauge-Higgs Unification Models with Brane Kinetic Terms
We show that the idea of Gauge-Higgs unification(GHU) can be rescued from the
constraint of weak mixing angle by introducing localized brane kinetic terms in
higher dimensional GHU models with bulk and simple gauge groups. We find that
those terms lead to a ratio between Higgs and W boson masses, which is a little
bit deviated from the one derived in the standard model. From numerical
analysis, we find that the current lower bound on the Higgs mass tends to
prefer to exceptional groups E(6), E(7), E(8) rather than other groups like
SU(3l), SO(2n+1), G(2), and F(4) in 6-dimensional(D) GHU models irrespective of
the compactification scales. For the compactification scale below 1 TeV, the
Higgs masses in 6D GHU models with SU(3l), SO(2n+1), G(2), and F(4) groups are
predicted to be less than the current lower bound unless a model parameter
responsible for re-scaling SU(2) gauge coupling is taken to be unnaturally
large enough. To see how the situation is changed in more higher dimensional
GHU model, we take 7D S^{3}/ Z_{2} and 8D T^{4}/ Z_{2} models. It turns out
from our numerical analysis that these higher dimensional GHU models with gauge
groups except for E(6) can lead to the Higgs boson whose masses are predicted
to be above the current lower bound only for the compatification scale above 1
TeV without taking unnaturally large value of the model parameter, whereas the
Higgs masses in the GHU models with E(6) are compatible with the current lower
bound even for the compatification scale below 1 TeV.Comment: 22 pages, 4 figure
Position Paper on Practicable Performance Criteria for the Removal Efficiency of Volatile Radionuclides
As a result of fuel reprocessing, volatile radionuclides may be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129I. The question we attempted to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examined the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012). These regulations apply to the total radionuclide release and to a particular organ - the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, we provided several cases. We first looked at the inventories for these radionuclides for three fuel types (PWR UOX, PWR MOX, and AHTGR), several burn-up values, and time out of reactor extending to 200 y. We calculated doses to the maximum exposed individual (MEI) with the EPA code CAP-88 (Rosnick 1992). Finally, we looked at two dose cases. Allocating all of the allowable dose to be used by the volatile radionuclides is one case, but, perhaps, unrealistic. In lieu of this, we arbitrarily selected a value of 10% of the allowable dose to be assigned to the volatile radionuclides. We calculated the required decontamination factors (DFs) for both of these cases, including the case for the thyroid dose for which 14C and 129I were the main contributors. With respect to 129I doses, we found that the highest dose was calculated with iodine as a fine particulate. The dose scaled as the fraction of the total 129I that was particulate. Therefore, we assumed for all of our calculations that 100% of the 129I was particulate and allow the user of the results given here to scale our calculated doses to their needs
Recommended from our members
Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998
This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications
Primary angioplasty for patients in cardiogenic shock:Optimal management
Cardiogenic shock complicates approximately 5-10 % of all MI events and remains the most common cause of death among MI cases. Over the past few decades, the mortality rate associated with cardiogenic shock has decreased with the introduction of early revascularisation, although there are limited data for patients with triple-vessel disease and left main stem disease. In more recent years, there have been a number of advances in the mechanical circulatory support devices that can help improve the haemodynamics of patients in cardiogenic shock. Despite these advances, together with progress in the use of inotropes and vasopressors, cardiogenic shock remains associated with high morbidity and mortality rates. This review will outline the management of cardiogenic shock complicating acute MI with a smajor focus on revascularisation techniques and the use of mechanical circulatory support devices.</p
Fuel age impacts on gaseous fission product capture during separations
As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have relatively short half-lives, 12.3 y and 10.7 y, respectively, the dose decreases with the time from when the fuel is removed from the reactor to the time it is processed (herein “fuel age”). One possible strategy for limiting the discharges of these short halflife radionuclides is to allow the fuel to age to take advantage of radioactive decay. Therefore, the doses and required DFs are calculated as a function of fuel age. Here we calculate, given the above constraints and assumptions, the minimum ages for each fuel type that would not require additional effluent controls for the shorter half-life volatile radionuclides based on dose considerations. With respect to 129I doses, we find that the highest dose is calculated with iodine as a fine particulate. The dose scales as the fraction of the total 129I that is particulate. Therefore, we assume for all of our calculations that 100% of the 129I is particulate and allow the user of the results given here to scale our calculated doses to their needs. To summarize the data given in the body and appendices of this report, we find that the principal isotopes of concern are 3H and 129I, the latter requiring the highest DFs. The maximum DF value for 129I is 8000 for the illustrated cases. The required DF for 3H could be as high as 720, depending on the age of the fuel processed. The DF for 85Kr could be up to ~60, depending on fuel age. The DF for 14C is in many cases 1 (no treatment required) but could be as high as 30. The DFs required are within the range of DFs that are reported for the capture technologies that are available for the volatile radionuclides. Achieving the required 129I and 3H DFs is more challenging. Variations in stack design and other design factors may also significantly impact the DF requirements
Wax Point Determinations Using Acoustic Resonance Spectroscopy
The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum
Bilingualism, Sleep, and Cognition : An Integrative View and Open Research Questions
Sleep and language are fundamental to human existence and have both been shown to substantially affect cognitive functioning including memory, attentional performance, and cognitive control. Surprisingly, there is little-to-no research that examines the shared impact of bilingualism and sleep on cognitive functions. In this paper, we provide a general overview of existing research on the interplay between bilingualism and sleep with a specific focus on executive functioning. First, we highlight their interconnections and the resulting implications for cognitive performance. Second, we emphasize the need to explore how bilingualism and sleep intersect at cognitive and neural levels, offering insights into potential ways of studying the interplay between sleep, language learning, and bilingual language use. Finally, we suggest that understanding these relationships could enhance our knowledge of reserve and its role in mitigating age-related cognitive decline
- …
