4 research outputs found

    A study of minimum bar spacing for bond in thin-shell precast concrete

    Get PDF
    This thesis document was issued under the authority of another institution, not NPS. At the time it was written, a copy was added to the NPS Library collection for reasons not now known.  It has been included in the digital archive for its historical value to NPS.  Not believed to be a CIVINS (Civilian Institutions) title.The purpose of the tests was to determine the minimum bar spacing and clear cover required to develop bond in thin-shell, precast concrete. The tests were of the pull-out type in which round bars of two sizes were cast in a horizontal position; clear spacing and cover (always equal) and the length of embedment were varied. The slips of the bars were measured at the loaded and free ends.http://www.archive.org/details/studyofminimumba00col

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    REFERENCES

    No full text
    corecore