13 research outputs found

    Chronically-implanted Neuropixels probes enable high yield recordings in freely moving mice: dataset

    Get PDF
    The advent of high-yield electrophysiology using Neuropixels probes is now enabling researchers to simultaneously record hundreds of neurons with remarkably high signal to noise. However, these probes have not been well-suited to use in freely moving mice. It is critical to study neural activity in unrestricted animals for many reasons, such as leveraging ethological approaches to study neural circuits. We designed and implemented a novel device that allows Neuropixels probes to be customized for chronically-implanted experiments in freely moving mice. We demonstrate the ease and utility of this approach in recording hundreds of neurons during an ethological behavior across weeks of experiments. We provide the technical drawings and procedures for other researchers to do the same. Importantly, our approach enables researchers to explant and reuse these valuable probes, a transformative step which has not been established for recordings with any type of chronically-implanted probe

    Chronically-implanted Neuropixels probes enable high yield recordings in freely moving mice

    Get PDF
    The advent of high-yield electrophysiology using Neuropixels probes is now enabling researchers to simultaneously record hundreds of neurons with remarkably high signal to noise. However, these probes have not been well-suited to use in freely moving mice. It is critical to study neural activity in unrestricted animals for many reasons, such as leveraging ethological approaches to study neural circuits. We designed and implemented a novel device that allows Neuropixels probes to be customized for chronically-implanted experiments in freely moving mice. We demonstrate the ease and utility of this approach in recording hundreds of neurons during an ethological behavior across weeks of experiments. We provide the technical drawings and procedures for other researchers to do the same. Importantly, our approach enables researchers to explant and reuse these valuable probes, a transformative step which has not been established for recordings with any type of chronically-implanted probe

    3D design files for chronically-implanted Neuropixels probes from "Juavinett, Ashley and Bekheet, George and Churchland, Anne K. (2018) bioRxiv"

    No full text
    These are 3D design files (internal mount, external casing, and stereotax adapter) for the Neuropixels casing to be used in chronically implanted mice. Designs are made in Solidworks and include .stl files for 3D printing

    Decision-making behaviors: weighing ethology, complexity, and sensorimotor compatibility

    No full text
    Rodent decision-making research aims to uncover the neural circuitry underlying the ability to evaluate alternatives and select appropriate actions. Designing behavioral paradigms that provide a solid foundation to ask questions about decision-making computations and mechanisms is a difficult and often underestimated challenge. Here, we propose three dimensions on which we can consider rodent decision-making tasks: ethological validity, task complexity, and stimulus-response compatibility. We review recent research through this lens, and provide practical guidance for researchers in the decision-making field

    Single-trial neural dynamics are dominated by richly varied movements

    Get PDF
    When experts are immersed in a task, do their brains prioritize task-related activity? Most efforts to understand neural activity during well-learned tasks focus on cognitive computations and task-related movements. We wondered whether task-performing animals explore a broader movement landscape and how this impacts neural activity. We characterized movements using video and other sensors and measured neural activity using widefield and two-photon imaging. Cortex-wide activity was dominated by movements, especially uninstructed movements not required for the task. Some uninstructed movements were aligned to trial events. Accounting for them revealed that neurons with similar trial-averaged activity often reflected utterly different combinations of cognitive and movement variables. Other movements occurred idiosyncratically, accounting for trial-by-trial fluctuations that are often considered 'noise'. This held true throughout task-learning and for extracellular Neuropixels recordings that included subcortical areas. Our observations argue that animals execute expert decisions while performing richly varied, uninstructed movements that profoundly shape neural activity

    The Churchland birthday data cake

    No full text
    My lab is the best!! They got me this incredible science cake highlighting our latest observations. However, I fear it makes us vulnerable to being scooped! If you want to refer to the figures, may I request that you cite the cake? #labmeeting #birthdaycake Cake by Barbara Cascon
    corecore