11 research outputs found

    Flexural electromechanical properties of multilayer graphene sheet/carbon nanotube/vinyl ester hybrid nanocomposites

    No full text
    The electrical, mechanical and piezoresistive responses of vinyl ester nanocomposites made of two types of multilayer graphene sheets (GSs) and multiwall carbon nanotube hybrid fillers at different relative concentrations is presented. Two types of GSs are used in order to evaluate the role of their physicochemical properties. The best mechanical properties were achieved with hybrids at 75% relative concentration of GSs. Collaborative effects were also observed in the electrical conductivity of the hybrids at this relative concentration. The flexural piezoresistive response yielded low sensitivity (with both, positive and negative gage factors) at the compression side of the flexural coupon. On the contrary, the tensile side of the coupon always presented positive resistance changes and significantly higher piezoresistive sensitivity. The highest piezoresistive sensitivity was found for hybrid materials with 75% relative concentration of GSs, using the graphenic sheets with larger lateral dimensions and higher structural quality (lower Raman I-D/I-G ratio).Consejo Nacional de Ciencia y TecnologĂ­a (CONACyT) 2262 240300 268595 Ministry of Science, Innovation and Universities in Spain MAT2016-81138-R SENER-CONACYT energetic sustainability project 25466

    Natural Deep Eutectic Solvent Optimization to Obtain an Extract Rich in Polyphenols from <i>Capsicum chinense</i> Leaves Using an Ultrasonic Probe

    No full text
    Capsicum chinense Jacq., from the Yucatan peninsula, is recognized worldwide for its pungency, flavor, and secondary metabolites content. This has resulted in an increase in its production, which has led to an increase in the number of byproducts considered waste, mainly its leaves. Capsicum chinense leaves have been demonstrated to contain polyphenols with bioactive properties (antioxidant, anti-inflammatory, antiobesogenic capacity, etc.); hence, the extraction of polyphenols through the use of natural deep eutectic solvents (NADES) with a green technology, such as an ultrasonic probe, could help to revalue these leaves by maximizing the extraction efficiency and preserving their bioactive properties. The objective of this study was to optimize the composition of a eutectic solvent for obtaining an extract rich in polyphenols from the Capsicum chinense leaf using a sonic probe. The optimum conditions of the composition of NADES for obtaining the highest Antioxidant capacity (Ax, 79.71% inhibition) were a 0.8 mol glucose to 1 mol of choline chloride ratio, and 12% water. In addition, with this composition, the Total Polyphenol Content (TPC) obtained was 165.39 mg GAE/100 g dry leaf, and the individual polyphenols, such as vanillin (19.15 mg/100 g dry leaf) and ferulic acid (1.35 mg/100 g dry leaf), were optimized. The habanero pepper leaf extract obtained using a eutectic solvent and a sonic probe demonstrated a high potential for use as an ingredient in the development of nutraceuticals (i.e., functional foods)

    Antioxidant Capacity, Vitamin C and Polyphenol Profile Evaluation of a Capsicum chinense By-Product Extract Obtained by Ultrasound Using Eutectic Solvent

    No full text
    Habanero pepper leaves and stems (by-products) have been traditionally considered waste; however, bioactive compounds such as polyphenols, vitamin C and carotenoids have been identified that can be used for formulation of nutraceuticals or functional foods. Furthermore, the extraction of these bioactive compounds by using environmentally friendly methods and solvents is desirable. Thus, the aim of this study was to assess the antioxidant capacity, total polyphenol content (TPC), the phenolic profile and vitamin C content in extracts obtained from by-products (stems and leaves) of two varieties (Mayapan and Jaguar) of habanero pepper by ultrasound-assisted extraction (UAE) using natural deep eutectic solvents (NADES). The results showed that NADES leads to extracts with significantly higher TPC, higher concentrations of individual polyphenols (gallic acid, protocatechuic acid, chlorogenic acid, cinnamic acid, coumaric acid), vitamin C and, finally, higher antioxidant capacity (9.55 &plusmn; 0.02 eq mg Trolox/g DM) than UAE extraction performed with methanol as the solvent. The association of individual polyphenols with NADES was confirmed by principal component analysis (PCA). Overall, NADES is an innovative and promising &ldquo;green&rdquo; extraction technique that can be applied successfully for the extraction of phenolic compounds from habanero pepper by-products

    The effect of PEGDE concentration and temperature on physicochemical and biological properties of chitosan

    No full text
    Chitosan (CHT) is a polysaccharide with multiple claimed properties and outstanding biocompatibility, generally attributed to the presence of protonable amino groups rendering a cationic natural polymer. However, the effect of changes in CHT structure due to hydration is not considered in its performance. This study compares the effects on biocompatibility after drying at 25 °C and 150 °C scaffolds of chitosan, polyethylene glycol diglycidyl ether (PEGDE) crosslinked CHT (low, medium and high concentration) and glutaraldehyde (GA) crosslinked CHT. PEGDE crosslinked CHT showed a reduction in free amino groups and the amide I/II ratio, which exhaustive drying reduced further. In X-ray diffraction (DRX) analysis, PEGDE crosslinked CHT showed multiple peaks, whereas the crystallinity percentage was reduced with an increase in PEGDE concentration and thermal treatments at 150 °C. In a direct contact cell assay, high osteoblast viability was achieved at low and medium PEDGE concentrations, which was improved when the crosslinked scaffolds were thermally treated at 150 °C. This was attributed to its partial hydrophilicity, low crystallinity and low surface roughness; this in spite of the small reduction in the amount of free amino groups on the surface induced during drying at 150 °C. Furthermore, PEGDE crosslinked CHT scaffolds showed strong vinculin and integrin 1ÎČ expression, which render them suitable for bone contact applications.This work was supported by the Consejo Nacional de Ciencia y Tecnologia (CONACYT) under grants projects 248378, 1360, 268595, 283972 and the PhD scholarship 339277. The authors thank Patricia Quintana and Daniel Aguilar Treviño for XRD and Wilian Cauich for XPS experiments at Laboratorio Nacional de Nano y Biomateriales (LANBIO), Cinvestav-IPN, Unidad MĂ©rida (Projects FOMIX-Yucatan 2008-108160 and CONACYT LAB-2009-01 No. 123913).Peer reviewe

    Effects of Neutralization on the Physicochemical, Mechanical, and Biological Properties of Ammonium-Hydroxide-Crosslinked Chitosan Scaffolds

    No full text
    It has been reported that chitosan scaffolds, due to their physicochemical properties, stimulate cell proliferation in different tissues of the human body. This study aimed to determine the physicochemical, mechanical, and biological properties of chitosan scaffolds crosslinked with ammonium hydroxide, with different pH values, to better understand cell behavior depending on the pH of the biomaterial. Scaffolds were either neutralized with sodium hydroxide solution, washed with distilled water until reaching a neutral pH, or kept at alkaline pH. Physicochemical characterization included scanning electron microscopy (SEM), elemental composition (EDX), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, thermogravimetric analysis (TGA), and mechanical testing. In vitro cytotoxicity was assessed via dental-pulp stem cells&rsquo; (DPSCs&rsquo;) biocompatibility. The results revealed that the neutralized scaffolds exhibited better cell proliferation and morphology. It was concluded that the chitosan scaffolds&rsquo; high pH (due to residual ammonium hydroxide) decreases DPSCs&rsquo; cell viability

    Zinc Oxide and Copper Chitosan Composite Films with Antimicrobial Activity

    No full text
    The role of the oral microbiome and its effect on dental diseases is gaining interest. Therefore, it has been sought to decrease the bacterial load to fight oral cavity diseases. In this study, composite materials based on chitosan, chitosan crosslinked with glutaraldehyde, chitosan with zinc oxide particles, and chitosan with copper nanoparticles were prepared in the form of thin films, to evaluate a new alternative with a more significant impact on the oral cavity bacteria. The chemical structures and physical properties of the films were characterized using by Fourier transform infrared spectroscopy (FTIR,) Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurements. Subsequently, the antimicrobial activity of each material was evaluated by agar diffusion tests. No differences were found in the hydrophilicity of the films with the incorporation of ZnO or copper particles. Antimicrobial activity was found against S. aureus in the chitosan film crosslinked with glutaraldehyde, but not in the other compositions. In contrast antimicrobial activity against S. typhimurium was found in all films. Based on the data of present investigation, chitosan composite films could be an option for the control of microorganisms with potential applications in various fields, such as medical and food industry

    Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films

    No full text
    Chitosan is a natural polymer that can sustain not only osteoblast adhesion and proliferation for bone regeneration purposes, but it is also claimed to exhibit antibacterial properties towards several Gram-positive and Gram-negative bacteria. In this study, chitosan was modified with sodium hyaluronate, crosslinked with polyethylene glycol diglycidyl ether (PEGDE) and both osteoblast cytotoxicity and antibacterial behavior studied. The presence of sodium hyaluronate and PEGDE on chitosan was detected by FTIR, XRD, and XPS. Chitosan (CHT) films with sodium hyaluronate crosslinked with PEGDE showed a better thermal stability than pristine hyaluronate. In addition, osteoblast cytocompatibility improved in films containing sodium hyaluronate. However, none of the films exhibit antimicrobial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus while exhibiting low to mild activity against Salmonella typhimurion.</i

    Antibacterial Behavior of Chitosan-Sodium Hyaluronate-PEGDE Crosslinked Films

    No full text
    Chitosan is a natural polymer that can sustain not only osteoblast adhesion and proliferation for bone regeneration purposes, but it is also claimed to exhibit antibacterial properties towards several Gram-positive and Gram-negative bacteria. In this study, chitosan was modified with sodium hyaluronate, crosslinked with polyethylene glycol diglycidyl ether (PEGDE) and both osteoblast cytotoxicity and antibacterial behavior studied. The presence of sodium hyaluronate and PEGDE on chitosan was detected by FTIR, XRD, and XPS. Chitosan (CHT) films with sodium hyaluronate crosslinked with PEGDE showed a better thermal stability than pristine hyaluronate. In addition, osteoblast cytocompatibility improved in films containing sodium hyaluronate. However, none of the films exhibit antimicrobial activity against Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus while exhibiting low to mild activity against Salmonella typhimurion
    corecore