8 research outputs found

    Electrochemical analysis of gold embroidery threads from archeological textiles

    Full text link
    [EN] A methodology for characterizing archeological gold embroidery threads based on two analytical techniques is described: Field emission scanning electron microscopy (FESEM-EDX) and voltammetry of immobilized microparticle (VIMP) methodologies. After the analysis of the chemical composition of the metallic foil, we analyze specific voltammetric features associated with the oxidation of gold in contact with aqueous H2SO4 and HCl electrolytes. Cyclic and square wave voltammetries (VMP) have been used to get information about the elemental composition and the corrosion products of the samples. AFM, FESEM-EDX, and FESEM-FIB-EDX methodologies complete the study and bring us closer to the composition of the alloys and the embroidery manufacture techniques. This technique actualizes the VIMP data and evidences the morphological and elemental differences between them; in particular, it is confirmed that Au-Ag-Cu alloys, with notably differences in Ag content depending on the provenance, were used.Projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2P, which are supported with Ministerio de Economia, Industria y Competitividad (MINECO), and Fondo Europeo de Desarrollo Regional (ERDF) funds, as well as project CTQ2017-85317-C2-1-P supported with funds from MINECO, ERDF, and Agencia Estatal de Investigacion (AEI), are gratefully acknowledged.Martínez, B.; Piquero-Cilla, J.; Domenech Carbo, MT.; Montoya, N.; Doménech Carbó, A. (2018). Electrochemical analysis of gold embroidery threads from archeological textiles. Journal of Solid State Electrochemistry. 22(7):2205-2215. https://doi.org/10.1007/s10008-018-3927-xS22052215227Járó M (2003). Metal threads in historical textiles, in Molecular and structural archaeology: Cosmetic and therapeutic chemicals, Centre de Recherche et de Restauration des Musées de France, Paris, pp 163−178Gleba M (2008) Auratae vestes: Gold textiles in the ancient Mediterranean, in Vestidos, Textiles y Tintes: Estudios sobre la produccion de bienes de consumo en la antigüedad, Proceedings of I Symposium Internacional sobre textiles y tintes del Mediterráneo en época romana, 2002. Consell Insular d‘Eivissa i Formentera and Universitat de Valencia,pp 63−80Járó M (1990) Gold embroidery and fabrics in europe: XI–XIV centuries. Gold Bull 23(2):40–57Karatzani A (2007) The evolution of a craft: the use of metal threads in the decoration of late and post Byzantine ecclesiastical textiles. University of London, LondonJáró M (1995) Manufacturing technique of gold threads and their imitations on museum textiles-chronology of the preparation of metal threads. Results of the scientific investigations in Endrei W, Ed. Yearbook of the Textile Museum, Budapest, pp 31−51Nord AG, Tronner K (2000) A note on the analysis of gilded metal embroidery threads. Stud Conservat 45:274–279Tronner K, Nord AG, Sjöstedt J, Hydman H (2002) Extremely thin gold layers on gilded silver threads. Stud Conservat 47:109–116Hoke E, Petrascheck-Heim I (1977) Microprobe analysis of gilded silver threads from mediaeval textiles. Stud in Conservat 22:49–62Indictor N, Koestler RJ, Blair C, Wardwell A (1988) The evaluation of metal warppings from medieval textiles using scanning electron microscoopy-energy dispersive X-ray spectrometry. Text Hist 19(1):3–22Indictor N, Koestler RJ, Wypyski M, Wardwell AE (1989) Metal threads made of proteinaceous substrates examined by scanning electron microscopy-energy dispersive x-ray spectrometry. Stud Conservat 34:171–182Karatzani A (2006). Metal threads: the historical development. Proceedings ISA: 444.09−444.19Járó M, Toth A, Gondar E (1990) Determination of the manufacturing technique of a 10th century metal thread. ICOM Committee for Conservation, 9th triennial meeting, Dresden, German Democratic Republic. ICOM Committee for Conservation, pp 299−301Enguita O, Climent-Font A, García G, Montero I, Fedi ME, Chiari M, Lucarelli F (2002) Characterization of metal threads using differential PIXE analysis. Nucl Inst Methods Phys Res B 189(1-4):328–333Balta ZI, Csedreki L, Furu E, Cretu I, Huszank R, Lupu M, Torok Z, Kertesz Z, Szikszai Z (2015) Ion beam analysis of golden threads from Romanian medieval textiles. Nucl Inst Methods Phys Res B 348:285–290Pascual-Pacheco J (1992) La necrópolis islámica de l’Almoina (Valencia). Primeros resultados. III CAME, Actas 2:406−412Pascual-Pacheco J, Serrano-Marcos ML (1996) Necrópolis islámicas en la ciudad de Valencia. Saitabi 46:231–252Ferragud-Adam X, Piquero-Cilla J, Doménech-Carbó MT, Guerola Blay V, Company X, Doménech-Carbó A (2017) Electrochemical analysis of gildings in Valencia altarpieces: a cross-age study since 15th until 20th century. J Solid State Electrochem 21:1477–1487Constantinescu B, Vasilescu A, Radtke M, Reinholz U (2010) Micro-SR-XRF studies for archaeological gold identification—the case of Carpathian gold and Romanian museal objects. Appl Phys A Mater Sci Process 99(2):383–389Antonelli F, Lazzarini L, Cancellere S, Tesser E (2016) Study of the deteriortion products, gilding, and polychromy of the stones of the Scuola Grande Di San Marco’s façade in Venice. Stud Conserv 61(2):74–85Gulotta D, Goidanich S, Bertoldi M, Bortolotto S, Toniolo L (2012) Gildings and false gildings of the baroque age: characterization and conservation problems. Archaeometry 54(5):940–954Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces, Electroanalytical chemistry, a series of advances. Bard AJ, Rubinstein I, Eds., Marcel Dekker, New York, vol. 20, pp 1−86Scholz F, Schröder U, Gulaboski R, Doménech-Carbó A (2014) Electrochemistry of immobilized particles and droplets, 2nd edn. Springer, Berlin-HeidelbergDoménech-Carbó A, Labuda J, Scholz F (2013) Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl Chem 85:609–631Doménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical methods in archaeometry, conservation and restoration. Monographs in electrochemistry series, Scholz F, Ed. Springer, Berlin-HeidelbergDoménech-Carbó A (2010) Voltammetric methods applied to identification, speciation and quantification of analytes from works of art: an overview. J Solid State Electrochem 14(3):363–369Doménech-Carbó A (2011) Tracing, authentifying and dating archaeological metal using the voltammetry of microparticles. Anal Methods 3(10):2181–2188Burke LD, Nugent PF (1997) The electrochemistry of gold: I the redox behaviour of the metal in aqueous media. Gold Bull 30(2):43–53Chen A, Lipkowski J (1999) Electrochemical and spectroscopic studies of hydroxide adsorption at the Au(111) electrode. J Phys Chem B 103(4):682–691Hoogvliet JC, van Bennekom WP (2001) Gold thin-film electrodes: an EQCM study of the influence of chromium and titanium adhesion layers on the response. Electrochim Acta 47(4):599–611Burke LD, O'Mullane AP (2000) Generation of active surface states of gold and the role of such states in electrocatalysis. J Solid State Electrochem 4(5):285–297Burke LD, O’Mullane AP, Lodge VE, Mooney MB (2001) Auto-inhibition of hydrogen gas evolution on gold in aqueous acid solution. J Solid State Electrochem 5(5):319–327Doyle RL, Lyons MEG (2014) The mechanism of oxygen evolution at superactivated gold electrodes in aqueous alkaline solution. J Solid State Electrochem 18(12):3271–3286Jeyabharathi C, Hasse U, Ahrens P, Scholz F (2014) Oxygen electroreduction on polycrystalline gold electrodes and on gold nanoparticle-modified glassy carbon electrodes. J Solid State Electrochem 18(12):3299–3306Jeyabharathi C, Ahrens P, Hasse U, Scholz F (2016) Identification of low-index crystal planes of polycrystalline gold on the basis of electrochemical oxide layer formation. J Solid State Electrochem 20(11):3025–3031Izumi T, Watanabe I, Yokoyama Y (1991) Activation of a gold electrode by electrochemical oxidation-reduction pretreatment in hydrochloric acid. J Electroanal Chem Interfacial Electrochem 303(1-2):151–160Scholz F, López de Lara González G, de Carvalho LM, Hilgemann M, Brainina Kh Z, Kahlert H, Jack RS, Minh DT (2007) Indirect electrochemical sensing of radicals and radical scavengers in biological matrices. Angew Chem Int Ed 46(42):8079–8081Nowicka A, Hasse U, Sievers G, Donten M, Stojek Z, Fletcher S, Scholz F (2010) Selective knockout of gold active sites. Angew Chem Int Ed 49(17):3006–3009Hasse U, Fricke K, Dias D, Sievers G, Wulff H, Scholz F (2012) Grain boundary corrosion of the surface of annealed thin layers of gold by OH·radicals. J Solid State Electrochem 16(7):2383–2389Hasse U, Wulff H, Helm CA, Scholz F (2013) Formation of gold surfaces with a strongly preferred {100}-orientation. J Solid State Electrochem 17(12):3047–3053Cepriá G, Abadías O, Pérez-Arantegui J, Castillo JR (2001) Electrochemical behavior of silver-copper alloys in voltammetry of microparticles: a simple method for screening purposes. Electroanalysis 13(6):477–483Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2012) Modeling corrosion of archaeological silver-copper coins using the voltammetry of immobilized particles. Electroanalysis 24:1945–1955Capelo S, Homem PM, Cavalheiro J, Fonseca ITE (2013) Linear sweep voltammetry: a cheap and powerful technique for the identification of the silver tarnish layer constituent. J Solid State Electrochem 17:223–234Doménech-Carbó A, Del Hoyo-Meléndez JM, Doménech-Carbó MT, Piquero-Cilla J (2017) Electrochemical analysis of the first Polish coins using the voltammetry of immobilized particles. Microchem J 130:47–55Jeyabharathi C, Hodnik N, Baldizzone C, Meier JC, Heggen M, Phani KLN, Bele M, Zorko M, Hocevar S, Mayrhofer KJJ (2013) Time evolution of the stability and oxygen reduction reaction activity of PtCu/C nanoparticles. ChemCatChem 5(9):2627–2635Meier JC, Galeano C, Katsounaros I, Topalov AA, Kostka A, Schuth F, Mayrhofer KJJ (2012) Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal 2(5):832–843Meier JC, Katsounaros I, Galeano C, Bongard HJ, Topalov AA, Kostka A, Karschin A, Schuth F, Mayrhofer KJJ (2012) Stability investigations of electrocatalysts on the nanoscale. Energy Environ Sci 5(11):9319–9330Martí-Villaba M, Davis J (2008) New directions for carbon-based detectors: exploiting the versatility of carbon substrates in electroanalysis. J Solid State Electrochem 12:1245–1254Noked M, Soffer A, Aurbach D (2011) The electrochemistry of activated carbonaceous materials: past, present, and future. J Solid State Electrochem 15(7-8):1563–1578Kang F, Leng Y, Zhang T-Y, Li B (1998) Electrochemical synthesis and characterization of ferric chloride-graphite intercalation compounds in aqueous solution. Carbon 36(4):383–390Urbaniak J, Skowronski JM, Olejnik B (2010) Preparation of Fe2O3-exfoliated graphite composite and its electrochemical properties investigated in alkaline solution. J Solid State Electrochem 14(9):1629–1635Herrera-Gallego J, Castellano CE, Calandra AJ, Arvia AJ (1975) The electrochemistry of gold in acid aqueous solutions containing chloride ions. J Electroanal Chem 66(3):207–230Doménech-Carbó A, Scholz F, Schmitt RT, Usera J, García-Forner AM, De l F-A, Jeyabharathi C, Piquero-Cilla J, Montoya N (2017) Electrochemical characterization of natural gold samples using the voltammetry of immobilized particles. Electrochem Commun 85:23–2

    Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles

    Full text link
    [EN] A series of 20 denarii from Boleslaus the Brave (992-1025) and Mieszko II Lambert (1025-1034), corresponding to the beginning of the Polish state were studied using the voltammetry of immobilized particles (VIMP) methodology. VIMP experiments, applied to nanosamples of the corrosion layers of the coins in contact with aqueous acetate buffer, provided well-defined responses mainly corresponding to the corrosion products of copper and lead. Such voltammetric responses, combined with X-ray fluorescence (XRF) spectroscopy experiments performed on the same set of coins, and complemented by focusing ion beam-field emission scanning electron microscope (FIB-FESEM) on silver coins from the 19th century, supported the hypothesis that two different metal sources were used in the former historical period and suggested that the coins were produced in three different mints. (C) 2016 Elsevier B.V. All rights reserve.Financial support from the MINECO Projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P which are supported with ERDF funds is gratefully acknowledged. The authors are very grateful to the Polish Ministry of Science and Higher Education for partly financing the work presented in this paper through a grant within the framework of the National Program for the Development of the Humanities (Decision No. 0100/NPRH3/H12/82/2014) and also wish to thank Dr. Jose Luis Moya Lopez and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politecnica de Valencia) for technical support.Doménech Carbó, A.; Del Hoyo Meléndez, JM.; Domenech Carbo, MT.; Piquero-Cilla, J. (2017). Electrochemical analysis of the first Polish coins using voltammetry of immobilized particles. Microchemical Journal. 130:47-55. https://doi.org/10.1016/j.microc.2016.07.020S475513

    Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating

    Full text link
    [EN] A methodology for dating copper/bronze archaeological objects aged under atmospheric environments using electrochemical impedance spectroscopy (EIS) is described. The method is based on the measurement of resistance associated to the growth of corrosion layers in EIS recorded upon immersion of the pieces in mineral water and applying a bias potential for the reduction of dissolved oxygen. Theoretical expressions for the time variation of such resistance following a potential rate law are presented. Equivalent expressions are derived and applied for estimating the variation of the tenorite/cuprite ratio from their specific voltammetric signals using voltammetry of microparticles data. Calibration curves were constructed from a set of well-documented coins.Financial support from the MEC Projects CTQ2011-28079-CO3-01 and 02 and CTQ2014-53736-C3-2-P which are supported with ERDF funds is gratefully acknowledged.Domenech Carbo, A.; Capelo, S.; Piquero-Cilla, J.; Domenech Carbo, MT.; Barrio, J.; Fuentes, A.; Al Sekhaneh, W. (2016). Dating archaeological copper using electrochemical impedance spectroscopy. Comparison with voltammetry of microparticles dating. Materials and Corrosion. 67(2):120-129. https://doi.org/10.1002/maco.201408048S120129672Friedman, I., & Smith, R. L. (1960). Part I, The Development of the Method. American Antiquity, 25(4), 476-493. doi:10.2307/276634Reich, S., Leitus, G., & Shalev, S. (2003). Measurement of corrosion content of archaeological lead artifacts by their Meissner response in the superconducting state; a new dating method. New Journal of Physics, 5, 99-99. doi:10.1088/1367-2630/5/1/399Scholz, F., Schröder, U., Meyer, S., Brainina, K. Z., Zakhachuk, N. F., Sobolev, N. V., & Kozmenko, O. A. (1995). The electrochemical response of radiation defects of non-conducting materials An electrochemical access to age determinations. Journal of Electroanalytical Chemistry, 385(1), 139-142. doi:10.1016/0022-0728(94)03840-yDoménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731qDoménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522Benarie, M., & Lipfert, F. L. (1986). A general corrosion function in terms of atmospheric pollutant concentrations and rain pH. Atmospheric Environment (1967), 20(10), 1947-1958. doi:10.1016/0004-6981(86)90336-7Strandberg, H. (1998). Reactions of copper patina compounds—II. influence of sodium chloride in the presence of some air pollutants. Atmospheric Environment, 32(20), 3521-3526. doi:10.1016/s1352-2310(98)00058-2Cano, E., Lafuente, D., & Bastidas, D. M. (2009). Use of EIS for the evaluation of the protective properties of coatings for metallic cultural heritage: a review. Journal of Solid State Electrochemistry, 14(3), 381-391. doi:10.1007/s10008-009-0902-6Hernandez-Escampa, M., Gonzalez, J., & Uruchurtu-Chavarin, J. (2009). Electrochemical assessment of the restoration and conservation of a heavily corroded archaeological iron artifact. Journal of Applied Electrochemistry, 40(2), 345-356. doi:10.1007/s10800-009-0003-3Angelini, E., Grassini, S., Parvis, M., & Zucchi, F. (2011). An in situ investigation of the corrosion behaviour of a weathering steel work of art. Surface and Interface Analysis, 44(8), 942-946. doi:10.1002/sia.3842Grassini, S., Angelini, E., Parvis, M., Bouchar, M., Dillmann, P., & Neff, D. (2013). An in situ corrosion study of Middle Ages wrought iron bar chains in the Amiens Cathedral. Applied Physics A, 113(4), 971-979. doi:10.1007/s00339-013-7724-1Doménech-Carbó, A., Doménech-Carbó, M. T., Peiró-Ronda, M. A., Martínez-Lázaro, I., & Barrio-Martín, J. (2012). Application of the voltammetry of microparticles for dating archaeological lead using polarization curves and electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 16(7), 2349-2356. doi:10.1007/s10008-012-1668-9Degrigny, C., Guibert, G., Ramseyer, S., Rapp, G., & Tarchini, A. (2009). Use of E corr vs time plots for the qualitative analysis of metallic elements from scientific and technical objects: the SPAMT Test Project. Journal of Solid State Electrochemistry, 14(3), 425-435. doi:10.1007/s10008-009-0890-6Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719Souissi, N., Triki, E., Bousselmi, L., & Khosrof, S. (2006). Comparaison between archaeological and artificially aged bronze interfaces. Materials and Corrosion, 57(10), 794-799. doi:10.1002/maco.200503974Souissi, N., & Triki, E. (2009). Characterization of ethnographic copper corrosion. Materials and Corrosion, 60(4), 262-268. doi:10.1002/maco.200805068Mata, A. L., Salta, M. M. L., Neto, M. M. M., Mendonça, M. H., & Fonseca, I. T. E. (2010). Characterization of two Roman coins from an archaeological site in Portugal. Materials and Corrosion, 61(3), 205-210. doi:10.1002/maco.200905284Feliu, S., Morcillo, M., & Feliu, S. (1993). The prediction of atmospheric corrosion from meteorological and pollution parameters—II. Long-term forecasts. Corrosion Science, 34(3), 415-422. doi:10.1016/0010-938x(93)90113-uSpence, J. W., Haynie, F. H., Lipfert, F. W., Cramer, S. D., & McDonald, L. G. (1992). Atmospheric Corrosion Model for Galvanized Steel Structures. CORROSION, 48(12), 1009-1019. doi:10.5006/1.3315903Bhattacharjee, S., Roy, N., Dey, A. K., & Banerjee, M. K. (1993). Statistical appraisal of the atmospheric corrosion of mild steel. Corrosion Science, 34(4), 573-581. doi:10.1016/0010-938x(93)90273-jKobus, J. (2000). Long-term atmospheric corrosion monitoring. Materials and Corrosion, 51(2), 104-108. doi:10.1002/(sici)1521-4176(200002)51:23.0.co;2-vBalasubramaniam, R., Laha, T., & Srivastava, A. (2004). Long term corrosion behaviour of copper in soil: A study of archaeological analogues. Materials and Corrosion, 55(3), 194-202. doi:10.1002/maco.200303723Natesan, M., Venkatachari, G., & Palaniswamy, N. (2006). Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India. Corrosion Science, 48(11), 3584-3608. doi:10.1016/j.corsci.2006.02.006Doménech, A., Doménech-Carbó, M. T., Pasies, T., & del Carmen Bouzas, M. (2012). Modeling Corrosion of Archaeological Silver-Copper Coins Using the Voltammetry of Immobilized Particles. Electroanalysis, 24(10), 1945-1955. doi:10.1002/elan.201200252Rosas-Camacho, O., Uquidi-Macdonald, M., & Macdonald, D. D. (2009). Deterministic Modeling of the Corrosion of Low-Carbon Steel by Dissolved Carbon Dioxide and the Effect of Acetic Acid. I-Effect of Carbon Dioxide. doi:10.1149/1.3259806Macdonald, D., & Englehardt, G. (2010). The Point Defect Model for Bi-Layer Passive Films. doi:10.1149/1.3496427Sharifi-Asl, S., Taylor, M. L., Lu, Z., Engelhardt, G. R., Kursten, B., & Macdonald, D. D. (2013). Modeling of the electrochemical impedance spectroscopic behavior of passive iron using a genetic algorithm approach. Electrochimica Acta, 102, 161-173. doi:10.1016/j.electacta.2013.03.143Macdonald, D. D. (2011). The history of the Point Defect Model for the passive state: A brief review of film growth aspects. Electrochimica Acta, 56(4), 1761-1772. doi:10.1016/j.electacta.2010.11.005Doménech-Carbó, A., Lastras, M., Rodríguez, F., Cano, E., Piquero-Cilla, J., & Osete-Cortina, L. (2013). Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 18(2), 399-409. doi:10.1007/s10008-013-2232-yBlum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739Nair, M. T. ., Guerrero, L., Arenas, O. L., & Nair, P. . (1999). Chemically deposited copper oxide thin films: structural, optical and electrical characteristics. Applied Surface Science, 150(1-4), 143-151. doi:10.1016/s0169-4332(99)00239-1Scott, D. A. (1997). Copper compounds in metals and colorants: oxides and hydroxides. Studies in Conservation, 42(2), 93-100. doi:10.1179/sic.1997.42.2.93Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002Doménech, A., Doménech-Carbó, M. T., Pasies, T., & Bouzas, M. C. (2011). Application of Modified Tafel Analysis to the Identification of Corrosion Products on Archaeological Metals Using Voltammetry of Microparticles. Electroanalysis, 23(12), 2803-2812. doi:10.1002/elan.201100577Li, W. S., Cai, S. Q., & Luo, J. L. (2004). Chronopotentiometric Responses and Capacitance Behaviors of Passive Film Formed on Iron in Borate Buffer Solution. Journal of The Electrochemical Society, 151(4), B220. doi:10.1149/1.1667521Liu, W., Zhang, H., Qu, Z., Zhang, Y., & Li, J. (2009). Corrosion behavior of the steel used as a huge storage tank in seawater. Journal of Solid State Electrochemistry, 14(6), 965-973. doi:10.1007/s10008-009-0886-2Toledo-Matos, L. A., & Pech-Canul, M. A. (2010). Evolution of an iron passive film in a borate buffer solution (pH 8.4). Journal of Solid State Electrochemistry, 15(9), 1927-1934. doi:10.1007/s10008-010-1213-7Park, J.-J., & Pyun, S.-I. (2003). Analysis of impedance spectra of a pitted Inconel alloy 600 electrode in chloride ion-containing thiosulfate solution at temperatures of 298–573 K. Journal of Solid State Electrochemistry, 7(6), 380-388. doi:10.1007/s10008-002-0346-8Ibrahim, M. A., Pongkao, D., & Yoshimura, M. (2001). The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions. Journal of Solid State Electrochemistry, 6(5), 341-350. doi:10.1007/s100080100229Xia, Z., Nanjo, H., Aizawa, T., Kanakubo, M., Fujimura, M., & Onagawa, J. (2007). Growth process of atomically flat anodic films on titanium under potentiostatical electrochemical treatment in H2SO4 solution. Surface Science, 601(22), 5133-5141. doi:10.1016/j.susc.2007.04.211Acevedo-Peña, P., Vázquez, G., Laverde, D., Pedraza-Rosas, J. E., & González, I. (2009). Influence of structural transformations over the electrochemical behavior of Ti anodic films grown in 0.1 M NaOH. Journal of Solid State Electrochemistry, 14(5), 757-767. doi:10.1007/s10008-009-0838-xFabregat-Santiago, F., Bisquert, J., Garcia-Belmonte, G., Boschloo, G., & Hagfeldt, A. (2005). Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Solar Energy Materials and Solar Cells, 87(1-4), 117-131. doi:10.1016/j.solmat.2004.07.017Rubinstein, I. (1987). Electrochemical Impedance Analysis of Polyaniline Films on Electrodes. Journal of The Electrochemical Society, 134(12), 3078. doi:10.1149/1.2100343Lee, S.-J., & Pyun, S.-I. (2006). Assessment of corrosion resistance of surface-coated galvanized steel by analysis of the AC impedance spectra measured on the salt-spray-tested specimen. Journal of Solid State Electrochemistry, 11(6), 829-839. doi:10.1007/s10008-006-0229-5Doménech, A., Doménech-Carbó, M. T., & Edwards, H. G. M. (2008). Quantitation from Tafel Analysis in Solid-State Voltammetry. Application to the Study of Cobalt and Copper Pigments in Severely Damaged Frescoes. Analytical Chemistry, 80(8), 2704-2716. doi:10.1021/ac7024333Mora, N., Cano, E., Polo, J. L., Puente, J. M., & Bastidas, J. M. (2004). Corrosion protection properties of cerium layers formed on tinplate. Corrosion Science, 46(3), 563-578. doi:10.1016/s0010-938x(03)00171-9Bastidas, J. M., Polo, J. L., Cano, E., Torres, C. L., & Mora, N. (2000). Localised corrosion of highly alloyed stainless steels in an ammonium chloride and diethylamine chloride aqueous solution. Materials and Corrosion, 51(10), 712-718. doi:10.1002/1521-4176(200010)51:103.0.co;2-vXu, J., Huang, W., & McCreery, R. L. (1996). Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes. Journal of Electroanalytical Chemistry, 410(2), 235-242. doi:10.1016/0022-0728(96)04545-7Kuang, F., Zhang, D., Li, Y., Wan, Y., & Hou, B. (2008). Electrochemical impedance spectroscopy analysis for oxygen reduction reaction in 3.5% NaCl solution. Journal of Solid State Electrochemistry, 13(3), 385-390. doi:10.1007/s10008-008-0570-yChen, G., Waraksa, C. C., Cho, H., Macdonald, D. D., & Mallouka, T. E. (2003). EIS Studies of Porous Oxygen Electrodes with Discrete Particles. Journal of The Electrochemical Society, 150(9), E423. doi:10.1149/1.159472

    Dating of Archaeological Gold by Means of Solid State Electrochemistry

    Full text link
    This is the peer reviewed version of the following article: Doménech Carbó, Antonio, Scholz, Fritz , Domenech Carbo, Mª Teresa, Piquero-Cilla, Juan , Montoya, Noemí, Pasies -Oviedo, Trinidad, Gozalbes, Manuel , Melchor Montserrat, José Manuel , Oliver, Arturo . (2018). Dating of Archaeological Gold by Means of Solid State Electrochemistry.ChemElectroChem, 5, 15, 2113-2117. DOI: 10.1002/celc.201800435 , which has been published in final form at http://doi.org/10.1002/celc.201800435. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving[EN] In archaeology and history of art, age determination is a fundamental analytical problem. While several techniques for age determination of various materials, like radiocarbon dating, are established, these methods cannot be applied for metals, for which new techniques have to be developed. For the first time a dating method for archaeological gold objects is described which is based on a corrosion clock and electrochemical measurements, using the voltammetry of immobilized particles. Samples are prepared by one touch' with a graphite pencil, only transferring a few nanograms of the archaeological gold. The method has been calibrated with the help of a series of well-documented gold specimen from different prehistory museums covering the last 2600years. Our results prove that this corrosion clock is going on a constant pace, practically independent of the environment, making it most attractive for applications in archaeometry.Projects CTQ2014-53736-C3-1-P and CTQ2014-53736-C3-2-P, which are supported with Ministerio de Economia, Industria y Competitividad (MINECO) and Fondo Europeo de Desarrollo Regional (ERDF) funds, as well as project CTQ2017-85317-C2-1-P supported with funds from, MINECO, ERDF and Agencia Estatal de Investigacion (AEI) are gratefully acknowledged. The authors also wish to thank Dr. Jose Luis Moya Lopez, Mrs. Alicia Nuez Inbernon and Mr. Manuel Planes Insausti (Microscopy Service of the Universitat Politecnica de Valencia) and M. Teresa Minguez and Clara Yebenes (Seccion de Microscopia del SCSIE, Universitat deValencia) for technical support.Doménech Carbó, A.; Scholz, F.; Domenech Carbo, MT.; Piquero-Cilla, J.; Montoya, N.; Pasies -Oviedo, T.; Gozalbes, M.... (2018). Dating of Archaeological Gold by Means of Solid State Electrochemistry. ChemElectroChem. 5(15):2113-2117. https://doi.org/10.1002/celc.201800435S2113211751

    Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

    Full text link
    A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semiempirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical stable state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another.Financial support from the MEC Project CTQ2011-28079-CO3-02 which is supported with ERDF funds is gratefully acknowledged.Domenech Carbo, A.; Lastras Pérez, M.; Rodríguez Calás, F.; Cano, E.; Piquero Cilla, J.; Osete Cortina, L. (2013). Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry. 18(2):399-409. https://doi.org/10.1007/s10008-013-2232-yS399409182Cronyn JM (1990) The elements of archaeological conservation. Routledge, LondonTorgoose S (1982) Stud Conservat 27:97–101Keene S, Orton C (1985) Stud Conservat 30:136–142Selwyn L (2004) Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge. Proc. Metal 2004, National Museum of Australia, Canberra, pp 294–306Scott DA, Eggert G (2009) Iron and steel in art: corrosion, colorants, conservation. Archetype, LondonNorth NA, Pearson C (1978) Stud Conservat 23:174–186Gilberg MR, Seeley NJ (1982) Stud Conservat 27:180–184Cornell RM, Giovanoli U (1990) Clays Clay Miner 38:469–476Scott DA, Seeley NJ (1987) Stud Conservat 32:73–76Watkinson D (1996) Chloride extraction from archaeological iron: comparative treatment efficiencies. In: Roy A, Smith P (eds) Archaeological conservation and its consequences. International Institute for Conservation, London, pp 208–212Watkinson D, Al Zahrani A (2008) The Conservator 31:75–86Schmutzler B, Eggert G (2010) Simplifying sodium sulphite solutions—the DBU Project Rettung vom dem Rost. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartWatkinson D (1982) An assessment of the lithium hydroxide treatments for archaeological ironwork. In: Clarke RW, Blackshaw SM (eds) Conservation of iron, maritime monographs and reports of the National Maritime Museum 53, pp 208–213Wunderlich C-H, Kuhn C, Dröber V, Eggert G, Schleid T (2010) Efficiency of chloride extraction with organic ammonium bases: the Kur-Project “Conservation and Professional Sotrage of Iron Artefacts”. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartBurshneva S, Smirnova N (2010) Some new advances in alkaline sulphite treatment of archaeological iron. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgartde Vivies P, Cook D, Drews MJ, Gonzalez NG, Mardikian P, Memet JB (2007) Transformation of akaganéite in archaeological iron artefacts using subcritical treatment. In: Degrigny C, Van Langh R, Joosten I, Ankersmit B (eds) Proceedings of the International Conference on Metals Conservation, Amsterdam, Netherlands, pp 17–21Mardikian P, Gonzalez N, Drews MJ, Nasanen L (2010) The use of subcritical solutions for the stabilization of archaeological iron artifacts. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartDalard F, Gourbeyre Y, Degrigny C (2002) Stud Conserv 47:117–121Adriaens A, Dowsett M, Leyssens K, Van Gasse B (2007) Anal Bioanal Chem 387:861–868Guilminot E, Baron G, Memet JB, Huet N, Le Noc E (2007) Electrolytic treatment of archaeological marine chloride impregnated iron objects by remote control. In: Degrigny C, Van Lang R, Joosten I, Ankersmith B (eds) Metal 07. Proceedings of the Interim meeting of the ICOM-CC Metal WG, vol 3, Amsterdam (the Netherlands). Rijksmuseum Amsterdam, Amsterdam, pp 38–43Liu J, Li Y, Wu M (2008) Stud Conserv 53:41–48Selwyn LS, McKinnon WR, Argyropoulos V (2001) Stud Conservat 46:109–120Schmutzler B, Eggert G (2010) The chloride left behind (dis)solving an analytical problem. In: Eggert G, Schmutzler B (eds) Achaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartDoménech-Carbó A, Lastras M, Rodríguez F, Osete-Cortina L (2013) Microchem J 106:41–50Scholz F, Meyer B (1992) Chem Soc Rev 23:341–347Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry, A Series of Advances, vol 20. Marcel Dekker, New York, pp 1–86Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinDoménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical Methods in Archaeometry, Conservation and Restoration. In: Scholz F (ed) Monographs in electrochemistry series. Springer, BerlinDoménech-Carbó A (2010) J Solid State Electrochem 14:363–379Doménech-Carbó A (2012) Electrochemical techniques. In: Edwards HGM, Vandenabeele P (eds) Analytical Archaeometry, selected topics, chapter 7. The Royal Society of Chemistry, LondonDoménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–631Doménech-Carbó A (2011) Anal Methods 3:2181–2188Doménech-Carbó A (2012) Electrochemical analysis: voltammetry of microparticles. In: Dillmann P, Adriaens A, Angelini E, Watkinson D (eds) Corrosion and conservation of cultural heritage metallic artefacts (Chapter II.7). European Federation of Corrosion, Maney, LeedsWalter GW (1981) J Electroanal Chem 118:259–273Murray JN (1997) Progr Org Coat 31:375–391Bastidas JM, Polo JL, Cano E, Torres CL, Mora N (2000) Mater Corros 51:712–718Bastidas JM, Polo JL, Torres CL, Cano E (2001) Corros Sci 43:269–281Alves VA, Brett CMA (2002) Electrochim Acta 47:2081–2091Polo JL, Cano E, Bastidas JM (2002) J Electroanal Chem 537:183–187Park JJ, Pyun SI (2003) J Solid State Electrochem 7:380–388Evesque M, Keddam M, Takenouti H (2004) Electrochim Acta 49:2937–2943Li WS, Cai SQ, Luo JL (2004) J Electrochem Soc 151:B220–B226Mora N, Cano E, Polo JL, Puente JM, Bastidas JM (2004) Corros Sci 46:563–568Chiavari C, Colledan A, Frignani A, Brunoro G (2006) Mater Chem Phys 95:252–259Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P (2007) Electrochim Acta 52:7760–7769Liu W, Zhang H, Qu Z, Zhang Y, Li J (2010) J Solid State Electrochem 14:965–973Toledo-Martos LA, Pech-Canul MA (2011) J Solid State Electrochem 15:1927–1934Cano E, Lafuente D, Bastidas DM (2010) J Solid State Electrochem 14:381–391Grassini S, Angelini E, Parvis M, Bouchar M, Dillmann P, Neff D (2013) Appl Phys A. doi: 10.1007/s00339-013-7724-1Hernandez-Escampa M, Gonzalez J, Uruchurtu-Chavarin J (2010) J Appl Electrochem 40:345–356Young L (1961) Anodic oxide films. Academic, New YorkRosas-Camacho O, Urquidi-Macdonald M, Macdonald DD (2009) ECS Trans 19:143–165Macdonald DD, Engelhardt GL (2010) ECS Trans 28:123–144Sharifi-Asl F, Taylor ML, Lu Z, Engelhardt GL, Kursten B, Macdonald DD (2013) Electrochim Acta 102:161–173Macdonald DD (2011) Electrochim Acta 56:1761–1772Macdonald DD, Sikora A, Engelhardt G (1998) Electrochim Acta 43:87–107Grygar T (1996) J Electroanal Chem 405:117–125Grygar T (1997) J Solid State Electrochem 1:77–82Xu J, Huang W, McCreery RL (1996) J Electroanal Chem 410:235–242Kuang F, Zhang D, Li Y, Wan Y, Hou B (2009) J Solid State Electrochem 13:385–390Chen G, Waraksa CC, Cho H, Macdonald DD, Mallouk TE (2003) J Electrochm Soc 150:E423–E428Rimmer M, Watkinson D, Wang Q (2012) Stud Conservat 57:29–41Poljacek SM, Risovic D, Cigula T, Gojo M (2012) J Solid State Electrochem 16:1077–1089Sluythers-Rehnach M (1994) Pure Appl Chem 66:1831–1891Boukamp BA, Bouwmeester HJM (2003) Solid State Ionics 157:29–33Ibrahim MAM, Pongkao D, Yoshimura M (2002) J Solid State Electrochem 2002(6):341–350Xia Z, Nanjo H, Aizawa T, Kanakubo M, Fujimura M, Onagawa J (2007) Surf Sci 601:5133–5141Lee S-J, Pyun S-I (2007) J Solid State Electrochem 11:829–839Raistrick ID (1990) Electrochim Acta 35:1579–1586Doménech-Carbó A, Doménech-Carbó MT, Peiró MA (2011) Electroanalysis 23:1391–1400Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2012) Electroanalysis 24:1945–1955Mutombo P, Hackerman N (1997) J Solid State Electrochem 1:194–198Fetisov VB, Ermakov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KZ (2004) J Solid State Electrochem 8:565–571Venkatram MS, Cole IS, Emmanuel B (2011) Electrochim Acta 56:8192–8203Turgoose S (1993) Structure, composition and deterioration of unearthed iron objects. In: Current problems in the conservation of metal antiquities. Tokyo National Research Institute of Cultural Properties, Tokyo, pp 35–5

    Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

    No full text
    A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semi-empirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical “stable” state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another.Peer Reviewe
    corecore