340 research outputs found

    Edge Effects in Finite Elongated Graphene Nanoribbons

    Full text link
    We analyze the relevance of finite-size effects to the electronic structure of long graphene nanoribbons using a divide and conquer density functional approach. We find that for hydrogen terminated graphene nanoribbons most of the physical features appearing in the density of states of an infinite graphene nanoribbon are recovered at a length of 40 nm. Nevertheless, even for the longest systems considered (72 nm long) pronounced edge effects appear in the vicinity of the Fermi energy. The weight of these edge states scales inversely with the length of the ribbon and they are expected to become negligible only at ribbons lengths of the order of micrometers. Our results indicate that careful consideration of finite-size and edge effects should be applied when designing new nanoelectronic devices based on graphene nanoribbons. These conclusions are expected to hold for other one-dimensional systems such as carbon nanotubes, conducting polymers, and DNA molecules.Comment: 4 pages, 4 figure

    Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons

    Full text link
    We present a novel comprehensive first-principles theoretical study of the electronic properties and relative stabilities of edge-oxidized zigzag graphene nanoribbons. The oxidation schemes considered include hydroxyl, carboxyl, ether, and ketone groups. Using screened exchange density functional theory, we show that these oxidized ribbons are more stable than hydrogen-terminated nanoribbons except for the case of the etheric groups. The stable oxidized configurations maintain a spin-polarized ground state with antiferromagnetic ordering localized at the edges, similar to the fully hydrogenated counterparts. More important, edge oxidation is found to lower the onset electric field required to induce half-metallic behavior and extend the overall field range at which the systems remain half-metallic. Once the half-metallic state is reached, further increase of the external electric field intensity produces a rapid decrease in the spin magnetization up to a point where the magnetization is quenched completely. Finally, we find that oxygen containing edge groups have a minor effect on the energy difference between the antiferromagnetic ground state and the above-lying ferromagnetic state.Comment: 5 pages,5 figures, 1 tabl

    Magnetic Exchange Couplings from Noncollinear Spin Density Functional Perturbation Theory

    Full text link
    We propose a method for the evaluation of magnetic exchange couplings based on noncollinear spin-density functional calculations. The method employs the second derivative of the total Kohn-Sham energy of a single reference state, in contrast to approximations based on Kohn-Sham total energy differences. The advantage of our approach is twofold: It provides a physically motivated picture of the transition from a low-spin to a high-spin state, and it utilizes a perturbation scheme for the evaluation of magnetic exchange couplings. The latter simplifies the way these parameters are predicted using first-principles: It avoids the non-trivial search for different spin-states that needs to be carried out in energy difference methods and it opens the possibility of "black-boxifying" the extraction of exchange couplings from density functional theory calculations. We present proof of concept calculations of magnetic exchange couplings in the H--He--H model system and in an oxovanadium bimetallic complex where the results can be intuitively rationalized.Comment: J.Chem. Phys. (accepted

    Constrained multivariate association with longitudinal phenotypes

    Get PDF
    The incorporation of longitudinal data into genetic epidemiological studies has the potential to provide valuable information regarding the effect of time on complex disease etiology. Yet, the majority of research focuses on variables collected from a single time point. This aim of this study was to test for main effects on a quantitative trait across time points using a constrained maximum-likelihood measured genotype approach. This method simultaneously accounts for all repeat measurements of a phenotype in families. We applied this method to systolic blood pressure (SBP) measurements from three time points using the Genetic Analysis Workshop 19 (GAW19) whole-genome sequence family simulated data set and 200 simulated replicates. Data consisted of 849 individuals from 20 extended Mexican American pedigrees. Comparisons were made among 3 statistical approaches: (a) constrained, where the effect of a variant or gene region on the mean trait value was constrained to be equal across all measurements; (b) unconstrained, where the variant or gene region effect was estimated separately for each time point; and (c) the average SBP measurement from three time points. These approaches were run for nine genetic variants with known effect sizes (\u3e0.001) for SBP variability and a known gene-centric kernel (MAP4)-based test under the GAW19 simulation model across 200 replicates

    Algoritmos paralelos para la resolución de ecuaciones diferenciales ordinarias mediante OpenMP

    Get PDF
    Proceeding of: XIV Jornadas de Paralelismo, Leganés, Madrid (Spain), 15-17, septiembre, 2003En los últimos años está adquiriendo un gran auge el estudio de los métodos numéricos para la resolución Ecuaciones Diferenciales Ordinarias (ODE’s). Muchos de los métodos numéricos existentes se basan en la aproximación de un modelo continuo mediante un modelo discreto y el cálculo de una solución aproximada en un conjunto finito de puntos. En [1] se presenta una nueva aproximación al cálculo de ODE’s donde la principal aportación pasa por permitir una solución del problema independientemente de que el Jacobiano sea o no invertible. En el presente trabajo se presenta un nuevo algoritmo basado en [1] que permite la resolución de ODE’s. Además, se ha llevado a cabo una implementación paralela sobre arquitecturas de memoria compartida de dicho algoritmo. Tanto el algoritmo secuencial como el algoritmo paralelo desarrollado se han implementado utilizando librerías estándar tanto en el cómputo como en la comunicación en aras de obtener portabilidad, robustez y eficiencia

    Family Dynamics and Personal Strengths among Dementia Caregivers in Argentina

    Get PDF
    This study examined whether healthier family dynamics were associated with higher personal strengths of resilience, sense of coherence, and optimism among dementia caregivers in Argentina. Caregivers are usually required to assist individuals with dementia, and family members have typically fulfilled that role. Personal strengths such as resilience, sense of coherence, and optimism have been shown to protect caregivers from some of the negative experiences of providing care, though the family-related variables associated with these personal strengths are largely unknown. Hierarchical multiple regressions investigated the extent to which family dynamics variables are associated with each of the caregiver personal strengths after controlling for demographic and caregiver characteristics. A sample of 105 caregivers from Argentina completed a set of questionnaires during a neurologist visit. Family dynamics explained 32% of the variance in resilience and 39% of the variance in sense of coherence. Greater family empathy and decreased family problems were uniquely associated with higher resilience. Greater communication and decreased family problems were uniquely associated with higher sense of coherence. Optimism was not found to be significantly associated with family dynamics. These results suggest that caregiver intervention research focused on the family may help improve caregiver personal strengths in Argentina and other Latin American countries

    Comparative Density Functional Theory Study of Magnetic Exchange Coupling in Di-nuclear Transition Metal Complexes

    Full text link
    Multi-center transition metal complexes (MCTMs) with magnetically interacting ions have been proposed as components for information processing devices and storage units. For any practical application of MCTMs as magnetic units, it is crucial to characterize their magnetic behavior, and in particular the isotropic magnetic exchange coupling, J, between its magnetic centers. Due to the large size of typical MCTMs, density functional theory (DFT) is the only practical electronic structure method for evaluating the J coupling. Here we assess the accuracy of different density functional approximations for predicting the magnetic couplings of seven di-metal transition metal complexes with known reliable experimental J couplings spanning from ferromagnetic to strong antiferromagnetic. The density functionals considered include global hybrid functionals which mix semilocal density functional approximations and exact exchange with a fixed admixing parameter, six local hybrid functionals where the admixing parameters are extended to be spatially dependent, the SCAN and r2^2SCAN meta-generalized gradient approximations (GGAs), and two widely used GGAs. We found that global hybrids have a tendency to over-correct the error in magnetic coupling parameters from the Perdew-Burke-Ernzerhof (PBE) GGA, while the performance of local hybrid density functionals is scattered without a clear trend, suggesting that more efforts are needed for the extension from global to local hybrid density functionals for this particular property. The SCAN and r2^2SCAN meta-GGAs are found to perform as well or better than the global and local hybrids on most tested complexes. We further analyze the charge density redistribution of meta-GGAs as well as global and local hybrid density functionals with respect to that of PBE, in connection to the self-interaction error (SIE) or delocalization error
    • …
    corecore