1,604 research outputs found

    Learning Human-Robot Collaboration Insights through the Integration of Muscle Activity in Interaction Motion Models

    Full text link
    Recent progress in human-robot collaboration makes fast and fluid interactions possible, even when human observations are partial and occluded. Methods like Interaction Probabilistic Movement Primitives (ProMP) model human trajectories through motion capture systems. However, such representation does not properly model tasks where similar motions handle different objects. Under current approaches, a robot would not adapt its pose and dynamics for proper handling. We integrate the use of Electromyography (EMG) into the Interaction ProMP framework and utilize muscular signals to augment the human observation representation. The contribution of our paper is increased task discernment when trajectories are similar but tools are different and require the robot to adjust its pose for proper handling. Interaction ProMPs are used with an augmented vector that integrates muscle activity. Augmented time-normalized trajectories are used in training to learn correlation parameters and robot motions are predicted by finding the best weight combination and temporal scaling for a task. Collaborative single task scenarios with similar motions but different objects were used and compared. For one experiment only joint angles were recorded, for the other EMG signals were additionally integrated. Task recognition was computed for both tasks. Observation state vectors with augmented EMG signals were able to completely identify differences across tasks, while the baseline method failed every time. Integrating EMG signals into collaborative tasks significantly increases the ability of the system to recognize nuances in the tasks that are otherwise imperceptible, up to 74.6% in our studies. Furthermore, the integration of EMG signals for collaboration also opens the door to a wide class of human-robot physical interactions based on haptic communication that has been largely unexploited in the field.Comment: 7 pages, 2 figures, 2 tables. As submitted to Humanoids 201

    Fast, Robust, and Versatile Event Detection through HMM Belief State Gradient Measures

    Full text link
    Event detection is a critical feature in data-driven systems as it assists with the identification of nominal and anomalous behavior. Event detection is increasingly relevant in robotics as robots operate with greater autonomy in increasingly unstructured environments. In this work, we present an accurate, robust, fast, and versatile measure for skill and anomaly identification. A theoretical proof establishes the link between the derivative of the log-likelihood of the HMM filtered belief state and the latest emission probabilities. The key insight is the inverse relationship in which gradient analysis is used for skill and anomaly identification. Our measure showed better performance across all metrics than related state-of-the art works. The result is broadly applicable to domains that use HMMs for event detection.Comment: 8 pages, 7 figures, double col, ieee conference forma

    Recovering from External Disturbances in Online Manipulation through State-Dependent Revertive Recovery Policies

    Full text link
    Robots are increasingly entering uncertain and unstructured environments. Within these, robots are bound to face unexpected external disturbances like accidental human or tool collisions. Robots must develop the capacity to respond to unexpected events. That is not only identifying the sudden anomaly, but also deciding how to handle it. In this work, we contribute a recovery policy that allows a robot to recovery from various anomalous scenarios across different tasks and conditions in a consistent and robust fashion. The system organizes tasks as a sequence of nodes composed of internal modules such as motion generation and introspection. When an introspection module flags an anomaly, the recovery strategy is triggered and reverts the task execution by selecting a target node as a function of a state dependency chart. The new skill allows the robot to overcome the effects of the external disturbance and conclude the task. Our system recovers from accidental human and tool collisions in a number of tasks. Of particular importance is the fact that we test the robustness of the recovery system by triggering anomalies at each node in the task graph showing robust recovery everywhere in the task. We also trigger multiple and repeated anomalies at each of the nodes of the task showing that the recovery system can consistently recover anywhere in the presence of strong and pervasive anomalous conditions. Robust recovery systems will be key enablers for long-term autonomy in robot systems. Supplemental info including code, data, graphs, and result analysis can be found at [1].Comment: 8 pages, 8 figures, 1 tabl

    A Novel Admission Control Model in Cloud Computing

    Full text link
    With the rapid development of Cloud computing technologies and wide adopt of Cloud services and applications, QoS provisioning in Clouds becomes an important research topic. In this paper, we propose an admission control mechanism for Cloud computing. In particular we consider the high volume of simultaneous requests for Cloud services and develop admission control for aggregated traffic flows to address this challenge. By employ network calculus, we determine effective bandwidth for aggregate flow, which is used for making admission control decision. In order to improve network resource allocation while achieving Cloud service QoS, we investigate the relationship between effective bandwidth and equivalent capacity. We have also conducted extensive experiments to evaluate performance of the proposed admission control mechanism

    On the Applicability of Temperature and Precipitation Data from CMIP3 for China

    Get PDF
    Global Circulation Models (GCMs) contributed to the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) and are widely used in global change research. This paper assesses the performance of the AR4 GCMs in simulating precipitation and temperature in China from 1960 to 1999 by comparison with observed data, using system bias (B), root-mean-square error (RMSE), Pearson correlation coefficient (R) and Nash-Sutcliffe model efficiency (E) metrics. Probability density functions (PDFs) are also fitted to the outputs of each model. It is shown that the performance of each GCM varies to different degrees across China. Based on the skill score derived from the four metrics, it is suggested that GCM 15 (ipsl_cm4) and GCM 3 (cccma_cgcm_t63) provide the best representations of temperature and precipitation, respectively, in terms of spatial distribution and trend over 10 years. The results also indicate that users should apply carefully the results of annual precipitation and annual temperature generated by AR4 GCMs in China due to poor performance. At a finer scale, the four metrics are also used to obtain best fit scores for ten river basins covering mainland China. Further research is proposed to improve the simulation accuracy of the AR4 GCMs regarding China

    Spin dynamics for bosons in an optical lattice

    Full text link
    We study the internal dynamics of bosonic atoms in an optical lattice. Within the regime in which the atomic crystal is a Mott insulator with one atom per well, the atoms behave as localized spins which interact according to some spin Hamiltonian. The type of Hamiltonian (Heisenberg, Ising), and the sign of interactions may be tuned by changing the properties of the optical lattice, or applying external magnetic fields. When, on the other hand, the number of atoms per lattice site is unknown, we can still use the bosons to perform general quantum computation

    Generalized Synchronization of Stochastic Discrete Chaotic System with Poisson Distribution Coefficient

    Get PDF
    This paper addresses the generalized synchronization of stochastic discrete chaotic systems with Poisson distribution coefficient. Firstly, based on the orthogonal polynomial approximation theory of discrete random function in Hilbert spaces, the discrete chaotic system with random parameter is transformed into its equivalent deterministic system. Secondly, a general method for the generalized synchronization of discrete chaotic system with random parameter is presented by Lyapunov stability theory and contraction theorem. Finally, two synchronization examples numerically illustrated that the proposed control scheme is effective for any stochastic discrete system
    • …
    corecore