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This paper addresses the generalized synchronization of stochastic discrete chaotic systems with Poisson distribution coefficient.
Firstly, based on the orthogonal polynomial approximation theory of discrete random function in Hilbert spaces, the discrete
chaotic system with random parameter is transformed into its equivalent deterministic system. Secondly, a general method for
the generalized synchronization of discrete chaotic system with random parameter is presented by Lyapunov stability theory and
contraction theorem. Finally, two synchronization examples numerically illustrated that the proposed control scheme is effective
for any stochastic discrete system.

1. Introduction

Synchronization is a kind of typical collective behavior
and basic motion in nature. Since Pecora and Carroll [1]
showed that it is possible to synchronize the coupled chaotic
dynamical system with different initial conditions, chaos
synchronization has been extensively studied due to its
theoretical challenge and great potential application in secure
communication, neuroscience, encoding message, chemi-
cal reaction, and complex networks [2]. Therefore, many
different types of synchronization methods such as phase
(antiphase) synchronization [3], partial synchronization [4],
projective synchronization [5, 6], lag synchronization [7],
complete synchronization [8], Q-S synchronization [9], fast
synchronization [10], and adaptive impulsive synchroniza-
tion [11] have been presented in continuous-time chaotic
systems in the past two decades.

But from the applied point of perspective, many systems
in daily life can be illustrated by the discrete-time system,
and that system compared with continuous system is more
suitable for simulation by computer. At the same time, some
continuous-time systems are based on discrete-time system
as the numerical approximation method, for instance, the
Runge-Kutta method and the predictor-corrector method
[12]. In order to analyze the science computation and

numerical simulation accurately in the field of engineering,
many researchers have gradually begun to think about the
performance of dynamical system in practice; for example,
communication signals which are transferred one by one
in an interval and the number of butterflies which is a
seasonal cycle time are usually described as the discrete-
time system. Besides, many mathematical models related to
nonlinear phenomena are defined as discrete-time dynamical
system in biological process, population growth, and neural
networks [13, 14]. Nowadays, a growing number of scholars
start to concentrate on the numerical methods which could
exactly reflect the dynamic behavior about the origin systems.
Therefore, study of discrete-time system is of great value in
theory and practical application. Recently, the research of
synchronization about discrete-time system has made some
progress. Zhang and Liu [15] have investigated impulsive
chaotic synchronization of discrete-time-switched systems
with state-dependent switching strategy. Taking advantage of
contraction mapping theorem, adaptive function projective
synchronization of discrete chaotic systems with unknown
parameters is considered by Wu and Fu [16]. Hengster-
Movric et al. [17] have proposed a new method for syn-
chronization based on the relation of graph eigenvalues to a
bounded circular region in the complex plane that depends
on the agent dynamics and the Riccati solution. In [18], the
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controlled synchronization problem for a class of nonlinear
discrete-time chaotic systems subjected to limited commu-
nication capacity has been introduced by Liu et al. A fuzzy
model-based adaptive approach to synchronize two different
discrete-time chaotic systems with unknown parameters is
presented by Vasegh and Majd [19]. Su and Ding [20] have
used the Euler method to a discrete delayed chaotic system
and achieved the globally exponential synchronization under
the negative feedback control. There have already been a lot
of research results about synchronization of the discrete-time
chaotic systems [21–24].

It is worth pointing out that these stochastic factors
like uncertainty of the structure parameter, perturbation of
external noise, and stochastic input are ubiquitous in nature,
society, economy, and realistic engineering. Under normal
circumstances, those stochastic factors just play a minor
influence. However, when the development of the system
needs to make a choice, it will become a dominant factor
which could affect the trend of deterministic system. As we
investigate the actual population growth and biological pro-
cess, the incomplete observations such as natural disasters,
weather changes, and technology factors are unavoidably
arousing uncertainties of mathematical models; especially,
phenomena which appear in stochastic system at critical
value due to the effects of random physical parameters are
always unforeseen in the deterministic system and interfere
seriously with daily production and life.Therefore, the system
with random parameter can properly represent the actual
mathematical model, and its research will possess more
practical significance.

Motivated by the previous discussion, we have found
that the research about synchronization of stochastic discrete
chaotic system is little. Based on this, in this paper, consid-
ering the influence of stochastic factor on system parameter
and through statistical characteristic of random variable,
we build a kind of stochastic discrete chaotic system with
random parameter and propose active control method to
achieve the generalized synchronization of stochastic discrete
system with random parameter. This paper is organized as
follows. The orthogonal polynomial approximation of the
stochastic discrete chaotic system with random parameter
is given in Section 2. Section 3 proposes the generalized
synchronization of discrete chaotic systems with random
parameter under an active controller. Two examples are given
to demonstrate the effectiveness of proposed method in
Section 4. Finally, conclusions are drawn in Section 5.

2. Orthogonal Polynomial Approximation of
Stochastic Discrete System with Poisson
Distribution Coefficient

In this paper, we will take stochastic Lorenz discrete system
and stochastic Henon map as examples.

The stochastic Lorenz discrete system is described as

𝑥 (𝑛 + 1) = (1 + 𝛼𝛽) 𝑥 (𝑛) − 𝛽𝑥 (𝑛) 𝑦 (𝑛) ,

𝑦 (𝑛 + 1) = (1 − 𝛽) 𝑦 (𝑛) + 𝛽𝑥
2
(𝑛) ,

(1)

where 𝛽 is a deterministic parameter, and 𝛼 is a random
parameter which can be expressed as

𝛼 = 𝛼 + 𝛿𝑘, (2)

where 𝑘 is a random variable which obeys density function of
the Poisson distribution 𝑝

𝑘
with standard deviation 𝜆, and 𝛿

is the strength of random disturbance.
So, the response of the system (1) with random parameter

can be approximately expressed by the following series under
condition of the convergence in mean square:

𝑥 (𝑛, 𝑘) =

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑃
𝑖
(𝑘) ,

𝑦 (𝑛, 𝑘) =

𝑀

∑

𝑖=0

𝑦
𝑖
(𝑛) 𝑃
𝑖
(𝑘) ,

(3)

where 𝑥
𝑖
(𝑛) = ∑

𝑁

𝑘=0
𝑝
𝑘
𝑥(𝑛, 𝑘)𝑃

𝑖
(𝑘), 𝑦

𝑖
(𝑛) = ∑

𝑁

𝑘=0
𝑝
𝑘
𝑦(𝑛, 𝑘)

𝑃
𝑖
(𝑘), 𝑃

𝑖
(𝑘) is the 𝑖th Charlier orthogonal polynomial, and𝑀

represents the largest order of the polynomial we have taken.
Substituting (3) and (2) into (1), we obtain

(

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛 + 1) 𝑃

𝑖
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𝑀
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(
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2

.

(4)

With the help of cycle recurrence formula of Charlier
polynomial [25]

𝑘𝑃
(𝜆)

𝑖
(𝑘) = 𝑃

(𝜆)

𝑖+1
(𝑘) + (𝑖 + 𝜆) 𝑃

(𝜆)

𝑖
(𝑘) + 𝜆𝑖𝑃

(𝜆)

𝑖−1
(𝑘) , (5)

the quadratic product polynomial of system (4) can be
further reduced into a linear combination of related single
polynomials. So the nonlinear terms in system (4) can be
written as

(

𝑀
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(𝑘))

2

=
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(6)



Discrete Dynamics in Nature and Society 3

where 𝑆
𝑖
(𝑛) and 𝑀

𝑖
(𝑛) are calculated by computer algebraic

system. Meantime, the stochastic term in the right hand side
of the first equation of system (4) can be simplified as

𝛿𝛽𝑘(

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑃
𝑖
(𝑘))

= 𝛿𝛽

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) 𝑘𝑃

𝑖
(𝑘)

= 𝛿𝛽(

𝑀

∑

𝑖=0

𝑥
𝑖
(𝑛) (𝑃

𝑖+1
(𝑘) + (𝑖 + 𝜆) 𝑃

𝑖
(𝑘) + 𝜆𝑖𝑃

𝑖−1
(𝑘)))

= 𝛿𝛽[

𝑀

∑

𝑖=0

(𝑃
𝑖
(𝑘) (𝜆 (𝑖 + 1) 𝑥

𝑖+1
(𝑛) + (𝑖 + 𝜆) 𝑥

𝑖
(𝑛)

+𝑥
𝑖−1
(𝑛)) − 𝑥

𝑖
(𝑛) 𝑃
𝑖+1
(𝑘)) ] ,

(7)

where 𝑥
−1

and 𝑥
𝑀+1

are zero by the principle of approxima-
tion.

As 𝑀 → ∞, Lorenz discrete system with random
parameter is strictly equivalent to system (4) in the sense of
mean square convergence. In order to facilitate the numerical
analysis in this paper, we select 𝑀 = 1. Based on statistical
characteristics of the Poisson distribution and the orthogonal
polynomial approximation of discrete random function, sub-
stituting (6) and (7) into (4) and multiplying 𝑃

𝑗
(𝑘) (𝑗 = 0, 1)

in both sides, by taking expectation with respect to 𝑘, we
finally get its approximate equivalent deterministic system of
Lorenz discrete system with random parameter as

𝑥
0
(𝑛+1)= (1+𝛼𝛽) 𝑥

0
(𝑛)

+𝛿𝜆𝛽 (𝑥
0
(𝑛)+𝑥

1
(𝑛))−𝛽𝑆

0
(𝑛) ,

𝑦
0
(𝑛 + 1) = (1 − 𝛽) 𝑦

0
(𝑛) + 𝛽𝑀

0
(𝑛) ,

𝑥
1
(𝑛 + 1) = (1 + 𝛼𝛽) 𝑥

1
(𝑛) + 𝛿𝛽 (1 + 𝜆) 𝑥

1
(𝑛)

+ 𝛿𝛽𝑥
0
(𝑛) − 𝛽𝑆

1
(𝑛) ,

𝑦
1
(𝑛 + 1) = (1 − 𝛽) 𝑦

1
(𝑛) + 𝛽𝑀

1
(𝑛) .

(8)

The stochastic Henon map can be depicted as

𝑥
∗
(𝑛 + 1) = 1 − 𝑎(𝑥

∗
(𝑛))
2

+ 𝑦
∗
(𝑛) ,

𝑦
∗
(𝑛 + 1) = 𝑏𝑥

∗
(𝑛) ,

(9)

where 𝑎 is a deterministic parameter, and 𝑏 is a random
parameter. According to the previously mentioned process of

Charlier orthogonal polynomial expansion, the Henon map
with random parameter is transformed approximately as

𝑥
∗

0
(𝑛 + 1) = 1 − 𝑎𝑆

∗

0
(𝑛) + 𝑦

∗

0
(𝑛) ,

𝑦
∗

0
(𝑛 + 1) = 𝑏𝑥

∗

0
(𝑛) + 𝛿𝜆 (𝑥

∗

0
(𝑛) + 𝑥

∗

1
(𝑛)) ,

𝑥
∗

1
(𝑛 + 1) = 1 − 𝑎𝑆

∗

1
(𝑛) + 𝑦

∗

1
(𝑛) ,

𝑦
∗

1
(𝑛 + 1) = 𝑏𝑥

∗

1
(𝑛) + 𝛿 (1 + 𝜆) 𝑥

∗

1
(𝑛) + 𝛿𝑥

∗

0
(𝑛) .

(10)

As parameters of the stochastic Lorenz discrete system are
𝛼 = 1.25, 𝛽 = 0.75, and 𝜆 = 1, and the initial condition
is chosen as (0.1, 0.2, 0.1, 0.2)𝑇, the system (8) with differ-
ent random intensities shows different chaotic behaviors as
shown in Figure 1. For the initial condition (0.4, 0.4, 0, 0)𝑇 of
stochastic Henon map, parameters are chosen as 𝑎 = 1.4, 𝑏 =
0.3, and 𝜆 = 1; Figure 2 depicts the influence of different
random intensities on the stochastic Henon map.

3. Generalized Synchronization for the
Discrete Systems with Random Parameter

Throughout this paper, ‖ ⋅ ‖
𝐹
denotes the Frobenius norm

in the Banach space. The drive and response systems are
expressed as

𝑥 (𝑛 + 1) = 𝐹 (𝑥 (𝑛)) = 𝐴𝑥 (𝑛) + 𝑓 (𝑥 (𝑛)) , (11)

𝑦 (𝑛 + 1) = 𝐺 (𝑥 (𝑛)) + 𝑢 (𝑛) = 𝐵𝑦 (𝑛) + 𝑔 (𝑦 (𝑛)) + 𝑢 (𝑛) ,

(12)

where 𝑥(𝑛), 𝑦(𝑛) ∈ 𝑅𝑛×1 are state variables, 𝐹, 𝐺, 𝑓, 𝑔 : 𝑅𝑛 →
𝑅
𝑛
, 𝐴, 𝐵 ∈ 𝑅

𝑛×𝑛, and 𝑢(𝑛) is the controller which is used to
achieve the generalized synchronization to be designed.

Definition 1. In 𝑛 × 𝑛 matrix 𝐴, if there exists a constant
𝛼
𝐴
(0 ≤ 𝛼

𝐴
< 1) such that the inequality





𝐴𝑥 − 𝐴𝑦




𝐹
≤ 𝛼
𝐴





𝑥 − 𝑦




𝐹

(13)

holds for every pair of points 𝑥,𝑦, where 𝑥,𝑦 belong to
the Banach space with norm ‖ ⋅ ‖

𝐹
, then we say that 𝐴 is a

contraction matrix.

Definition 2. The drive system and the response system are
said to be the globally generalized synchronization. If there
exists a controller 𝑢(𝑛) and a matrix𝑀 such that

lim
𝑛→∞

‖𝑒(𝑛)‖𝐹
= lim
𝑛→∞





𝑦(𝑛) − 𝑀𝑥(𝑛 − 𝑚)




𝐹
= 0, (14)

for any initial conditions. It contains several special cases: if
matrix 𝑀 is a unit matrix and the lag value 𝑚 = 0 (𝑚 >

0, 𝑚 < 0), the problem can be transformed to complete (lag,
anticipated) synchronization; if the lag value𝑚 = 𝑛, it will be
converted into chaos control.
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Figure 1: The two attractors of stochastic Lorenz discrete system with 𝛿 = 0.00, 𝛿 = 0.003.
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Figure 2: The two attractors of stochastic Henon map with 𝛿 = 0.00, 𝛿 = 0.002.

Theorem 3. Assume that an 𝑛 × 𝑛 matrix𝑀 is exchangeable
withmatrices 𝐵 and𝐶. If the controller 𝑢(𝑛) in response system
(12) is given by

𝑢 (𝑛) = 𝑀(𝑓 (𝑥 (𝑛 − 𝑚)) + (𝐴 − 𝐵 + 𝐶) 𝑥 (𝑛 − 𝑚))

− 𝑔 (𝑦 (𝑛)) − 𝐶𝑦 (𝑛) ,

(15)

where 𝐶 ∈ 𝑅
𝑛×𝑛, then lim

𝑛→∞
‖𝑒(𝑛)‖

𝐹
= lim

𝑛→∞
‖𝑦(𝑛)−

𝑀𝑥(𝑛 − 𝑚)‖
𝐹
= 0 is satisfied, that is, globally generalized

synchronization being achieved under the controller 𝑢(𝑛).

Proof. According to the drive system (11) and the response
system (12), the error states by Definition 2 can be written as

𝑒 (𝑛 + 1) = 𝐵𝑦 (𝑛) + 𝑔 (𝑦 (𝑛)) + 𝑢 (𝑛)

− 𝑀(𝐴𝑥 (𝑛 − 𝑚) + 𝑓 (𝑥 (𝑛 − 𝑚)))

= 𝐵𝑦 (𝑛) + 𝑔 (𝑦 (𝑛))

+ 𝑀(𝑓 (𝑥 (𝑛 − 𝑚)) + (𝐴 − 𝐵 + 𝐶) (𝑥 (𝑛 − 𝑚)))

− 𝑔 (𝑦 (𝑛)) − 𝐶𝑦 (𝑛)
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−𝑀(𝐴𝑥 (𝑛 − 𝑚) + 𝑓 (𝑥 (𝑛 − 𝑚)))

= 𝐵𝑦 (𝑛) −𝑀𝐵𝑥 (𝑛 − 𝑚) +𝑀𝐶𝑥 (𝑛 − 𝑚) − 𝐶𝑦 (𝑛) .

(16)

Because 𝑀𝐵 = 𝐵𝑀 and 𝑀𝐶 = 𝐶𝑀, then the error
system is simplified to 𝑒(𝑛 + 1) = (𝐵 − 𝐶)𝑒(𝑛). Constructing
the Lyapunov function 𝑉

𝑛
= |𝑒(𝑛)|, then its derivative is

Δ𝑉 = 𝑉
𝑛+1

− 𝑉
𝑛
= |𝑒 (𝑛 + 1)| − |𝑒 (𝑛)| = (|𝐵 − 𝐶| − 1) |𝑒 (𝑛)| .

(17)

If ‖𝐵−𝐶‖ ≤ 1, that is, 𝐵−𝐶 is a contractionmatrix, according
to the Lyapunov stability theory and contraction theorem, the
error system is globally stable. It means that the generalized
synchronization is achieved.

4. Illustrative Examples

In this part, to confirm the validity of the proposed control
method, we will introduce two types of generalized synchro-
nization for homogeneous and heterogeneous stochastic dis-
crete chaotic systems. In the process of numerical simulation,
we choose all random intensity to be 𝛿 = 0.002.

Example 1. Generalized complete synchronization of the
identical stochastic discrete chaotic system.

Consider the stochastic Henon map

𝑥 (𝑛 + 1) = 1 − 𝑎(𝑥 (𝑛))
2
+ 𝑦 (𝑛) ,

𝑦 (𝑛 + 1) = 𝑏𝑥 (𝑛)

(18)

as the drive system, in which 𝑏 is a random parameter and
the system (9) is the response system. In order to achieve
the generalized synchronization of Henon map with random
parameter, we rewrite the system (18) and (9) as

(

𝑥 (𝑛 + 1)

𝑦 (𝑛 + 1)
)

= (

𝑞 𝑝

𝛼 𝛽
)(

𝑥 (𝑛)

𝑦 (𝑛)
)

+ (
1 − 𝑎(𝑥 (𝑛))

2
+ (1 − 𝑝) 𝑦 (𝑛) − 𝑞𝑥 (𝑛)

(𝑏 − 𝛼) 𝑥 (𝑛) − 𝛽𝑦 (𝑛)

) ,

(19)

(

𝑥
∗
(𝑛 + 1)

𝑦
∗
(𝑛 + 1)

)

= (

𝑞 𝑝

𝛼 𝛽
)(

𝑥
∗
(𝑛)

𝑦
∗
(𝑛)
)

+ (
1 − 𝑎(𝑥

∗
(𝑛))
2

+ (1 − 𝑝) 𝑦
∗
(𝑛) − 𝑞𝑥

∗
(𝑛)

(𝑏 − 𝛼) 𝑥
∗
(𝑛) + 𝛽𝑦

∗
(𝑛)

)

+ 𝑢 (𝑛) ,

(20)

where |𝑞|, |𝑝|, |𝛼|, |𝛽| < 1, 𝑞, 𝑝, 𝛼, 𝛽 ̸= 0, and 𝑞, 𝑝, 𝛼, 𝛽 ∈ 𝑅.
Now, the error state variable is defined as 𝑒(𝑛 − 1) = (⋅)∗(𝑛) −
𝑀(⋅)(𝑛−𝑚).Whenwe select thematrix𝐶 = 0, 𝐴 = 𝐵 = (

𝑞 𝑝

𝛼 𝛽
)

is a contraction matrix, and taking the exchangeable matrix
𝑀 = (

𝑐 𝑑

𝑒 𝑓
) (𝑐, 𝑑, 𝑒, 𝑓 ∈ 𝑅), the generalized synchronization

can be realized byTheorem 3 under the following controller:

𝑢 (𝑛) = 𝑀𝑓 (𝑛 − 𝑚) − 𝑓
∗
(𝑛) , (21)

where

𝑓 (𝑛) = (
1 − 𝑎𝑥

2
(𝑛) − 𝑞𝑥 (𝑛) + (1 − 𝑝) 𝑦 (𝑛)

(𝑏 − 𝛼) 𝑥 (𝑛) − 𝛽𝑦 (𝑛)

) ,

𝑓
∗
(𝑛) = (

1 − 𝑎(𝑥
∗
(𝑛))
2

− 𝑞𝑥
∗
(𝑛) + (1 − 𝑝) 𝑦

∗
(𝑛)

(𝑏 − 𝛼) 𝑥
∗
(𝑛) − 𝛽𝑦

∗
(𝑛)

) .

(22)

Taking advantage of the Charlier orthogonal polynomial
expansion, the stochasticHenonmap (19) can be transformed
into the following system:

(

𝑥
0
(𝑛 + 1)

𝑦
0
(𝑛 + 1)

𝑥
1
(𝑛 + 1)

𝑦
1
(𝑛 + 1)

)

= (

𝑞 𝑝 0 0

𝛼 𝛽 0 0

0 0 𝑞 𝑝

0 0 𝛼 𝛽

)(

𝑥
0
(𝑛)

𝑦
0
(𝑛)

𝑥
1
(𝑛)

𝑦
1
(𝑛)

)

+(

1 − 𝑆
0
(𝑛) + (1 − 𝑝) 𝑦

0
(𝑛) − 𝑞𝑥

0
(𝑛)

(𝑏 + 𝛿𝜆 − 𝛼) 𝑥
0
(𝑛) + 𝛿𝜆𝑥

0
(𝑛) − 𝛽𝑦

0
(𝑛)

1 − 𝑎𝑆
1
(𝑛) + (1 − 𝑝) 𝑦

1
(𝑛) − 𝑞𝑥

1
(𝑛)

𝛿𝑥
0
(𝑛) + (𝑏 + 𝛿 (𝜆 + 1) − 𝛼) 𝑥

1
(𝑛) − 𝛽𝑦

1
(𝑛)

) .

(23)

Similarly, the system (20) can be reduced to a corresponding
equivalent deterministic system. According to the afore-
mentioned conditions, when we choose some appropriate
parameter values, the matrix 𝐴 = 𝐵 = (

𝑞 𝑝

𝛼 𝛽
) =

(
0.1 0.2

0.2 0.5
) , 𝑀 = (

𝑐 𝑑

𝑒 𝑓
) = (

1 0.5

4.5 0
), the standard deviation

𝜆 = 1, the lag value 𝑚 = 0, and lim
𝑛→∞

‖𝑒(𝑛)‖
𝐹

=

lim
𝑛→∞

‖(⋅)
∗
(𝑛) − 𝑀(⋅)(𝑛 − 𝑚).‖

𝐹
= 0 are set up. Through

the numerical simulation, Figure 3 shows time response dia-
grams of the generalized complete synchronization error of
state variables between the drive system (18) and the response
system (9) under the controller 𝑢(𝑛) (21) for different initial
conditions.

Example 2. Generalized lag synchronization of the different
stochastic discrete chaotic system.

Taking the stochastic Lorenz discrete system (1) and the
stochastic Henon map (9) as the drive and response systems,
we rewrite the drive system (1) and the response system (9) in
the following matrices:

(

𝑥 (𝑛 + 1)

𝑦 (𝑛 + 1)
)=(

1 + 𝛼𝛽 0

0 1 − 𝛽
)(

𝑥 (𝑛)

𝑦 (𝑛)
)+(

−𝛽𝑥 (𝑛) 𝑦 (𝑛)

𝛽𝑥
2
(𝑛)

) ,

(24)

(

𝑥
∗
(𝑛 + 1)

𝑦
∗
(𝑛 + 1)

)=(

0 1

𝑏 0
)(

𝑥
∗
(𝑛)

𝑦
∗
(𝑛)
)+(

1 − 𝑎(𝑥
∗
(𝑛))
2

0

)+𝑢 (𝑛) ,

(25)
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Figure 3: The time response of the generalized synchronization error of state variables.

where 𝛼 and 𝑏 are random parameters, respectively. By
Theorem 3, on choosing an appropriate matrix 𝐶 = (

𝑐 𝑑

𝑒 𝑓
),

we design a controller as follows:

𝑢 (𝑛) = 𝑀(𝑓 (𝑛 − 𝑚) + (𝐴 − 𝐵 + 𝐶) 𝑥 (𝑛 − 𝑚))

− 𝑔 (𝑦 (𝑛)) − 𝐶𝑦 (𝑛) ,

(26)

where

𝑓 (𝑛) + (𝐴 − 𝐵 + 𝐶) 𝑥 (𝑛)

= (

−𝛽𝑥 (𝑛) 𝑦 (𝑛)

𝛽𝑥
2
(𝑛)

) + (

1 + 𝛼𝛽 + 𝑐 −1 + 𝑑

−𝑏 + 𝑒 1 − 𝛽 + 𝑓
)(

𝑥 (𝑛)

𝑦 (𝑛)
) ,

𝑔 (𝑦 (𝑛)) + 𝐶𝑦 (𝑛) = (
1 − 𝑎(𝑥

∗
(𝑛))
2

0

) + (

𝑐 𝑑

𝑒 𝑓
)(

𝑥
∗
(𝑛)

𝑦
∗
(𝑛)
) .

(27)

By applying the Charlier orthogonal polynomial expan-
sion, the controlled response system (25) with random
parameter can be reduced into an equivalent deterministic
controlled system.Thematrices𝐴, 𝐵 and𝐶 can be converted
into the corresponding fourth-order square matrix. So, its
corresponding fourth-order matrix of 𝐵 is

𝐵

= (

0 1 0 0

𝑏 + 𝛿𝜆 0 𝛿𝜆 0

0 0 0 1

𝛿 0 𝑏 + 𝛿 (1 + 𝜆) 0

) . (28)

For the unit matrix being exchangeable with any square
matrix, when we choose the matrix 𝑀 = 𝑞𝐼 (𝑞 ∈ 𝑁), then
the error state equation 𝑒(𝑛 + 1) = (𝐵 −𝐶)𝑒(𝑛) is stable if we
choose an appropriate matrix 𝐶 such that the corresponding
matrix 𝐶 of 𝐶 satisfies that 𝐵 − 𝐶 is a contraction matrix.
With the given initial condition, the lag value 𝑚 = 5, 𝑞 =

3, 𝜆 = 1, and 𝑏 = 0.3, we have

𝐶

= (

−0.5 0.5 0 0

0 0.2 0 0

0 0 −0.5 0.5

0 0 0 0.2

) , (29)

that is, 𝑐 = −𝑑 = 0.5, 𝑒 = 0, and 𝑓 = 0.2; the time response
of the generalized lag synchronization error of state variables
is shown in Figure 4.

5. Conclusions

The problem of generalized synchronization for stochastic
discrete chaotic system by active control is investigated in
this paper. By the approximation principle of orthogonal
polynomial, we transformed the stochastic discrete chaotic
system with Poisson distribution coefficient into the equiv-
alent deterministic discrete system. According to Lyapunov
stability theory and contraction matrix theorem, an active
controller has been proposed for the generalized synchro-
nization of those stochastic discrete systems. The illustrative
results show that this active controller can be used to achieve
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Figure 4: The time response of the synchronization error of state variables.

the synchronization of any stochastic discrete system with
random parameter.

Appendix

𝑆
𝑖
(𝑛), 𝑀

𝑖
(𝑛) (𝑖 = 0, 1) in (8) can be derived through the

computer algebraic system, such as Maple, as follows:

𝑆
0
(𝑛) = 𝑥

2

0
(𝑛) + 2𝑥

2

1
(𝑛) ,

𝑆
1
(𝑛) = 2𝑥

0
(𝑛) 𝑥
1
(𝑛) + 2𝑥

2

1
(𝑛) ,

𝑀
0
(𝑛) = 𝑥

0
(𝑛) 𝑦
0
(𝑛) + 2𝑥

1
(𝑛) 𝑦
1
(𝑛) ,

𝑀
1
(𝑛) = 𝑥

0
(𝑛) 𝑦
1
(𝑛) + 𝑥

1
(𝑛) 𝑦
0
(𝑛) + 2𝑥

1
(𝑛) 𝑦
1
(𝑛) .

(A.1)

𝑆
∗

𝑖
(𝑛) (𝑖 = 0, 1) in (10) can be calculated by Maple as

follows:

𝑆
∗

0
(𝑛) = (𝑥

∗

0
(𝑛))
2

+ 2(𝑥
∗

1
(𝑛))
2

,

𝑆
∗

1
(𝑛) = 2𝑥

∗

0
(𝑛) 𝑥
∗

1
(𝑛) + 2(𝑥

∗

1
(𝑛))
2

.

(A.2)
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