5 research outputs found

    Hypothalamic Mitochondrial Dysfunction as a Target in Obesity and Metabolic Disease

    No full text
    Mitochondria are important organelles for the adaptation to energy demand that play a central role in bioenergetics metabolism. The mitochondrial architecture and mitochondrial machinery exhibits a high degree of adaptation in relation to nutrient availability. On the other hand, its disruption markedly affects energy homeostasis. The brain, more specifically the hypothalamus, is the main hub that controls energy homeostasis. Nevertheless, until now, almost all studies in relation to mitochondrial dysfunction and energy metabolism have focused in peripheral tissues like brown adipose tissue, muscle, and pancreas. In this review, we highlight the relevance of the hypothalamus and the influence on mitochondrial machinery in its function as well as its consequences in terms of alterations in both energy and metabolic homeostasis

    Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender

    No full text
    Chemerin (also known as tazarotene-induced gene 2 and retinoic acid receptor responder 2) has been identified as an adipokine that exerts effects on many biological processes, including adipogenesis, angiogenesis, inflammation, immune responses, and food intake. This variety of effects has led to its implication in obesity and co-morbidities including diabetes and a risk of cardiovascular disease. The biological effects are mostly mediated by a so-called G protein-coupled receptor, chemokine-like receptor 1 (CMKLR1). Given the association of chemerin with obesity and related diseases, we decided to study in detail the regulation of chemerin and CMKLR1 expression in white adipose tissue (WAT). Specifically, we focused on their expression levels in physiological and pathophysiological settings involved in energy balance: e.g., fasting, postnatal development, and gender. We used Sprague Dawley rats with different nutritional statuses, levels of hormonal deficiency, and states of development as well as ob/ob (leptin-deficient) mice. We analysed the protein expression of both the ligand and receptor (chemerin and CMKLR1) in gonadal WAT by western blotting. We found that chemerin and CMKLR1 protein levels were regulated in WAT by different conditions associated with metabolic changes such as nutritional status, sex steroids, pregnancy, and food composition. Our data indicate that regulation of the expression of this new adipokine and its receptor by nutritional status and gonadal hormones may be a part of the adaptive mechanisms related to altered fat mass and its metabolic complications

    The stimulation of GLP-1 secretion and delivery of GLP-1 agonists via nanostructured lipid carriers.

    No full text
    Nanoparticulate based drug delivery systems have been extensively studied to efficiently encapsulate and deliver peptides orally. However, most of the existing data mainly focus on the nanoparticles as a drug carrier, but the ability of nanoparticles having a biological effect has not been exploited. Herein, we hypothesize that nanostructured lipid carriers (NLCs) could activate the endogenous glucagon-like peptide-1 (GLP-1) secretion and also act as oral delivery systems for GLP-1 analogs (exenatide and liraglutide). NLCs effectively encapsulated the peptides, the majority of which were only released under the intestinal conditions. NLCs, with and without peptide encapsulation, showed effective induction of GLP-1 secretion in vitro from the enteroendocrinal L-cells (GLUTag). NLCs also showed a 2.9-fold increase in the permeability of exenatide across the intestinal cell monolayer. The intestinal administration of the exenatide and liraglutide loaded NLCs did not demonstrate any glucose lowering effect on normal mice. Further, ex vivo studies depicted that the NLCs mainly adhered to the mucus layer. In conclusion, this study demonstrates that NLCs need further optimization to overcome the mucosal barrier in the intestine; nonetheless, this study also presents a promising strategy to use a dual-action drug delivery nanosystem which synergizes its own biological effect and that of the encapsulated drug molecule

    Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21

    Get PDF
    International audienceEarly-life determinants are thought to be a major factor in the rapid increase of obesity. However, while maternal nutrition has been extensively studied, the effects of breastfeeding by the infant on the reprogramming of energy balance in childhood and throughout adulthood remain largely unknown. Here we show that delayed weaning in rat pups protects them against diet-induced obesity in adulthood, through enhanced brown adipose tissue thermogenesis and energy expenditure. In-depth metabolic phenotyping in this rat model as well as in transgenic mice reveals that the effects of prolonged suckling are mediated by increased hepatic fibroblast growth factor 21 (FGF21) production and tanycyte-controlled access to the hypothalamus in adulthood. Specifically, FGF21 activates GABA-containing neurons expressing dopamine receptor 2 in the lateral hypothalamic area and zona incerta. Prolonged breastfeeding thus constitutes a protective mechanism against obesity by affecting long-lasting physiological changes in liver-to-hypothalamus communication and hypothalamic metabolic regulation
    corecore