109 research outputs found

    Normalizer Circuits and Quantum Computation

    Full text link
    (Abridged abstract.) In this thesis we introduce new models of quantum computation to study the emergence of quantum speed-up in quantum computer algorithms. Our first contribution is a formalism of restricted quantum operations, named normalizer circuit formalism, based on algebraic extensions of the qubit Clifford gates (CNOT, Hadamard and π/4\pi/4-phase gates): a normalizer circuit consists of quantum Fourier transforms (QFTs), automorphism gates and quadratic phase gates associated to a set GG, which is either an abelian group or abelian hypergroup. Though Clifford circuits are efficiently classically simulable, we show that normalizer circuit models encompass Shor's celebrated factoring algorithm and the quantum algorithms for abelian Hidden Subgroup Problems. We develop classical-simulation techniques to characterize under which scenarios normalizer circuits provide quantum speed-ups. Finally, we devise new quantum algorithms for finding hidden hyperstructures. The results offer new insights into the source of quantum speed-ups for several algebraic problems. Our second contribution is an algebraic (group- and hypergroup-theoretic) framework for describing quantum many-body states and classically simulating quantum circuits. Our framework extends Gottesman's Pauli Stabilizer Formalism (PSF), wherein quantum states are written as joint eigenspaces of stabilizer groups of commuting Pauli operators: while the PSF is valid for qubit/qudit systems, our formalism can be applied to discrete- and continuous-variable systems, hybrid settings, and anyonic systems. These results enlarge the known families of quantum processes that can be efficiently classically simulated. This thesis also establishes a precise connection between Shor's quantum algorithm and the stabilizer formalism, revealing a common mathematical structure in several quantum speed-ups and error-correcting codes.Comment: PhD thesis, Technical University of Munich (2016). Please cite original papers if possible. Appendix E contains unpublished work on Gaussian unitaries. If you spot typos/omissions please email me at JLastNames at posteo dot net. Source: http://bit.ly/2gMdHn3. Related video talk: https://www.perimeterinstitute.ca/videos/toy-theory-quantum-speed-ups-based-stabilizer-formalism Posted on my birthda

    Classical simulations of Abelian-group normalizer circuits with intermediate measurements

    Full text link
    Quantum normalizer circuits were recently introduced as generalizations of Clifford circuits [arXiv:1201.4867]: a normalizer circuit over a finite Abelian group GG is composed of the quantum Fourier transform (QFT) over G, together with gates which compute quadratic functions and automorphisms. In [arXiv:1201.4867] it was shown that every normalizer circuit can be simulated efficiently classically. This result provides a nontrivial example of a family of quantum circuits that cannot yield exponential speed-ups in spite of usage of the QFT, the latter being a central quantum algorithmic primitive. Here we extend the aforementioned result in several ways. Most importantly, we show that normalizer circuits supplemented with intermediate measurements can also be simulated efficiently classically, even when the computation proceeds adaptively. This yields a generalization of the Gottesman-Knill theorem (valid for n-qubit Clifford operations [quant-ph/9705052, quant-ph/9807006] to quantum circuits described by arbitrary finite Abelian groups. Moreover, our simulations are twofold: we present efficient classical algorithms to sample the measurement probability distribution of any adaptive-normalizer computation, as well as to compute the amplitudes of the state vector in every step of it. Finally we develop a generalization of the stabilizer formalism [quant-ph/9705052, quant-ph/9807006] relative to arbitrary finite Abelian groups: for example we characterize how to update stabilizers under generalized Pauli measurements and provide a normal form of the amplitudes of generalized stabilizer states using quadratic functions and subgroup cosets.Comment: 26 pages+appendices. Title has changed in this second version. To appear in Quantum Information and Computation, Vol.14 No.3&4, 201

    Anticoncentration theorems for schemes showing a quantum speedup

    Get PDF
    One of the main milestones in quantum information science is to realise quantum devices that exhibit an exponential computational advantage over classical ones without being universal quantum computers, a state of affairs dubbed quantum speedup, or sometimes "quantum computational supremacy". The known schemes heavily rely on mathematical assumptions that are plausible but unproven, prominently results on anticoncentration of random prescriptions. In this work, we aim at closing the gap by proving two anticoncentration theorems and accompanying hardness results, one for circuit-based schemes, the other for quantum quench-type schemes for quantum simulations. Compared to the few other known such results, these results give rise to a number of comparably simple, physically meaningful and resource-economical schemes showing a quantum speedup in one and two spatial dimensions. At the heart of the analysis are tools of unitary designs and random circuits that allow us to conclude that universal random circuits anticoncentrate as well as an embedding of known circuit-based schemes in a 2D translation-invariant architecture.Comment: 12+2 pages, added applications sectio

    Contextuality and Wigner function negativity in qubit quantum computation

    Get PDF
    We describe a scheme of quantum computation with magic states on qubits for which contextuality is a necessary resource possessed by the magic states. More generally, we establish contextuality as a necessary resource for all schemes of quantum computation with magic states on qubits that satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.Comment: published versio

    Contextuality as a resource for models of quantum computation on qubits

    Get PDF
    A central question in quantum computation is to identify the resources that are responsible for quantum speed-up. Quantum contextuality has been recently shown to be a resource for quantum computation with magic states for odd-prime dimensional qudits and two-dimensional systems with real wavefunctions. The phenomenon of state-independent contextuality poses a priori an obstruction to characterizing the case of regular qubits, the fundamental building block of quantum computation. Here, we establish contextuality of magic states as a necessary resource for a large class of quantum computation schemes on qubits. We illustrate our result with a concrete scheme related to measurement-based quantum computation.Comment: Published version. We have revised the title, introduction and discussion, as well as slightly simplified the setting in this versio

    Equivalence between contextuality and negativity of the Wigner function for qudits

    Get PDF
    Understanding what distinguishes quantum mechanics from classical mechanics is crucial for quantum information processing applications. In this work, we consider two notions of non-classicality for quantum systems, negativity of the Wigner function and contextuality for Pauli measurements. We prove that these two notions are equivalent for multi-qudit systems with odd local dimension. For a single qudit, the equivalence breaks down. We show that there exist single qudit states that admit a non-contextual hidden variable model description and whose Wigner functions are negative
    • …
    corecore