14,160 research outputs found

    Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors

    Get PDF
    We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors

    Fluxon Dynamics of a Long Josephson Junction with Two-gap Superconductors

    Full text link
    We investigate the phase dynamics of a long Josephson junction (LJJ) with two-gap superconductors. In this junction, two channels for tunneling between the adjacent superconductor (S) layers as well as one interband channel within each S layer are available for a Cooper pair. Due to the interplay between the conventional and interband Josephson effects, the LJJ can exhibit unusual phase dynamics. Accounting for excitation of a stable 2π\pi-phase texture arising from the interband Josephson effect, we find that the critical current between the S layers may become both spatially and temporally modulated. The spatial critical current modulation behaves as either a potential well or barrier, depending on the symmetry of superconducting order parameter, and modifies the Josephson vortex trajectories. We find that these changes in phase dynamics result in emission of electromagnetic waves as the Josephson vortex passes through the region of the 2π\pi-phase texture. We discuss the effects of this radiation emission on the current-voltage characteristics of the junction.Comment: 14 pages, 6 figure

    Boundedness and Stability of Impulsively Perturbed Systems in a Banach Space

    Full text link
    Consider a linear impulsive equation in a Banach space x˙(t)+A(t)x(t)=f(t), t0,\dot{x}(t)+A(t)x(t) = f(t), ~t \geq 0, x(τi+0)=Bix(τi0)+αi,x(\tau_i +0)= B_i x(\tau_i -0) + \alpha_i, with limiτi=\lim_{i \rightarrow \infty} \tau_i = \infty . Suppose each solution of the corresponding semi-homogeneous equation x˙(t)+A(t)x(t)=0,\dot{x}(t)+A(t)x(t) = 0, (2) is bounded for any bounded sequence {αi}\{ \alpha_i \}. The conditions are determined ensuring (a) the solution of the corresponding homogeneous equation has an exponential estimate; (b) each solution of (1),(2) is bounded on the half-line for any bounded ff and bounded sequence {αi}\{ \alpha_i \} ; (c) limtx(t)=0\lim_{t \rightarrow \infty}x(t)=0 for any f,αif, \alpha_i tending to zero; (d) exponential estimate of ff implies a similar estimate for xx.Comment: 19 pages, LaTex-fil

    A General Approach to Optomechanical Parametric Instabilities

    Full text link
    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation

    Decay of weak solutions to the 2D dissipative quasi-geostrophic equation

    Full text link
    We address the decay of the norm of weak solutions to the 2D dissipative quasi-geostrophic equation. When the initial data is in L2L^2 only, we prove that the L2L^2 norm tends to zero but with no uniform rate, that is, there are solutions with arbitrarily slow decay. For the initial data in LpL2L^p \cap L^2, with 1p<21 \leq p < 2, we are able to obtain a uniform decay rate in L2L^2. We also prove that when the L22α1L^{\frac{2}{2 \alpha -1}} norm of the initial data is small enough, the LqL^q norms, for q>22α1q > \frac{2}{2 \alpha -1} have uniform decay rates. This result allows us to prove decay for the LqL^q norms, for q22α1q \geq \frac{2}{2 \alpha -1}, when the initial data is in L2L22α1L^2 \cap L^{\frac{2}{2 \alpha -1}}.Comment: A paragraph describing work by Carrillo and Ferreira proving results directly related to the ones in this paper is added in the Introduction. Rest of the article remains unchange

    Critical Behaviour of integrable mixed spins chains

    Full text link
    We construct a mixed spin 1/2 and SS integrable model and investigate its finite size properties. For a certain conformal invariant mixed spin system the central charge can be decomposed in terms of the conformal anomaly of two single integrable models of spin 1/2 and spin (S1/2)(S-1/2). We also compute the ground state energy and the sound velocity in the thermodynamic limit.Comment: This was the first correct calculation of the central charge in mixed integrable spin chains. For effects of a magnetic field see J.Phys.A:Math.Gen. 26 (1993) 730

    Isoscalar Hamiltonians for light atomic nuclei

    Get PDF
    The charge-dependent realistic nuclear Hamiltonian for a nucleus, composed of neutrons and protons, can be successfully approximated by a charge-independent one. The parameters of such a Hamiltonian, i.e., the nucleon mass and the NN potential, depend upon the mass number A, charge Z and isospin quantum number T of state of the studied nucleus.Comment: REVTeX, 22 pages, 3 eps figures, to appear in PR
    corecore