19,827 research outputs found
Unified structure for exact towers of scar states in the AKLT and other models
Quantum many-body scar states are many-body states with finite energy density in non-integrable models that do not obey the eigenstate thermalization hypothesis. Recent works have revealed "towers" of scar states that are exactly known and are equally spaced in energy, specifically in the AKLT model, the spin-1 XY model, and a spin-1/2 model that conserves number of domain walls. We provide a common framework to understand and prove known exact towers of scars in these systems, by evaluating the commutator of the Hamiltonian and a ladder operator. In particular we provide a simple proof of the scar towers in the integer-spin 1d AKLT models by studying two-site spin projectors. Through this picture we deduce a family of Hamiltonians that share the scar tower with the AKLT model, and also find common parent Hamiltonians for the AKLT and XY model scars. We also introduce new towers of exact states, organized in a "pyramid" structure, in the spin-1/2 model through successive application of a non-local ladder operator
Aquaporin-4-dependent K(+) and water transport modeled in brain extracellular space following neuroexcitation.
Potassium (K(+)) ions released into brain extracellular space (ECS) during neuroexcitation are efficiently taken up by astrocytes. Deletion of astrocyte water channel aquaporin-4 (AQP4) in mice alters neuroexcitation by reducing ECS [K(+)] accumulation and slowing K(+) reuptake. These effects could involve AQP4-dependent: (a) K(+) permeability, (b) resting ECS volume, (c) ECS contraction during K(+) reuptake, and (d) diffusion-limited water/K(+) transport coupling. To investigate the role of these mechanisms, we compared experimental data to predictions of a model of K(+) and water uptake into astrocytes after neuronal release of K(+) into the ECS. The model computed the kinetics of ECS [K(+)] and volume, with input parameters including initial ECS volume, astrocyte K(+) conductance and water permeability, and diffusion in astrocyte cytoplasm. Numerical methods were developed to compute transport and diffusion for a nonstationary astrocyte-ECS interface. The modeling showed that mechanisms b-d, together, can predict experimentally observed impairment in K(+) reuptake from the ECS in AQP4 deficiency, as well as altered K(+) accumulation in the ECS after neuroexcitation, provided that astrocyte water permeability is sufficiently reduced in AQP4 deficiency and that solute diffusion in astrocyte cytoplasm is sufficiently low. The modeling thus provides a potential explanation for AQP4-dependent K(+)/water coupling in the ECS without requiring AQP4-dependent astrocyte K(+) permeability. Our model links the physical and ion/water transport properties of brain cells with the dynamics of neuroexcitation, and supports the conclusion that reduced AQP4-dependent water transport is responsible for defective neuroexcitation in AQP4 deficiency
Moving boundary and photoelastic coupling in GaAs optomechanical resonators
Chip-based cavity optomechanical systems are being considered for
applications in sensing, metrology, and quantum information science. Critical
to their development is an understanding of how the optical and mechanical
modes interact, quantified by the coupling rate . Here, we develop GaAs
optomechanical resonators and investigate the moving dielectric boundary and
photoelastic contributions to . First, we consider coupling between the
fundamental radial breathing mechanical mode and a 1550 nm band optical
whispering gallery mode in microdisks. For decreasing disk radius from
m to m, simulations and measurements show that changes
from being dominated by the moving boundary contribution to having an equal
photoelastic contribution. Next, we design and demonstrate nanobeam
optomechanical crystals in which a GHz mechanical breathing mode couples
to a 1550 nm optical mode predominantly through the photoelastic effect. We
show a significant (30 ) dependence of on the device's in-plane
orientation, resulting from the difference in GaAs photoelastic coefficients
along different crystalline axes, with fabricated devices exhibiting
as high as 1.1 MHz for orientation along the [110] axis.
GaAs nanobeam optomechanical crystals are a promising system which can combine
the demonstrated large optomechanical coupling strength with additional
functionality, such as piezoelectric actuation and incorporation of optical
gain media
The virtual human face – superimposing the simultaneously captured 3D photorealistic skin surface of the face on the untextured skin image of the CBCT Scan
The aim of this study was to evaluate the impact of simultaneous capture of the three-dimensional (3D) surface of the face and cone beam computed tomography (CBCT) scan of the skull on the accuracy of their registration and superimposition. 3D facial images were acquired in 14 patients using the Di3d (Dimensional Imaging, UK) imaging system and i-CAT CBCT scanner. One stereophotogrammetry image was captured at the same time as the CBCT and another one hour later. The two stereophotographs were then individually superimposed over the CBCT using VRmesh. Seven patches were isolated on the final merged surfaces. For the whole face and each individual patch; maximum and minimum range of deviation between surfaces, absolute average distance between surfaces, and standard deviation for the 90th percentile of the distance errors were calculated. The superimposition errors of the whole face for both captures revealed statistically significant differences (P=0.00081). The absolute average distances in both separate and simultaneous captures were 0.47mm and 0.27mm, respectively. The level of superimposition accuracy in patches from separate captures ranged between 0.3 and 0.9mm, while that of simultaneous captures was 0.4mm. Simultaneous capture of Di3d and CBCT images significantly improved the accuracy of superimposition of these image modalities
Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions.
Life and death fate decisions allow cells to avoid massive apoptotic death in response to genotoxic stress. Although the regulatory mechanisms and signalling pathways controlling DNA repair and apoptosis are well characterized, the precise molecular strategies that determine the ultimate choice of DNA repair and survival or apoptotic cell death remain incompletely understood. Here we report that a protein tyrosine phosphatase, EYA, is involved in promoting efficient DNA repair rather than apoptosis in response to genotoxic stress in mammalian embryonic kidney cells by executing a damage-signal-dependent dephosphorylation of an H2AX carboxy-terminal tyrosine phosphate (Y142). This post-translational modification determines the relative recruitment of either DNA repair or pro-apoptotic factors to the tail of serine phosphorylated histone H2AX (gamma-H2AX) and allows it to function as an active determinant of repair/survival versus apoptotic responses to DNA damage, revealing an additional phosphorylation-dependent mechanism that modulates survival/apoptotic decisions during mammalian organogenesis
A Note on the Slim Accretion Disk Model
We show that when the gravitational force is correctly calculated in dealing
with the vertical hydrostatic equilibrium of black hole accretion disks, the
relationship that is valid for geometrically thin disks, i.e., constant, where is the sound speed, is the Keplerian
angular velocity, and is the half-thickness of the disk, does not hold for
slim disks. More importantly, by adopting the correct vertical gravitational
force in studies of thermal equilibrium solutions, we find that there exists a
maximally possible accretion rate for each radius in the outer region of
optically thick accretion flows, so that only the inner region of these flows
can possibly take the form of slim disks, and strong outflows from the outer
region are required to reduce the accretion rate in order for slim disks to be
realized.Comment: 14 pages, 5 figures, accepted by Ap
Analyzing agrammatic narrative production using Northwestern Narrative Language Analysis (NNLA) and Computerized Language Analysis (CLAN): A qualitative and quantitative comparison
Spontaneous language sample analysis is often used to characterize production deficit patterns in aphasia. Methods for accomplishing this, however, are labor-intensive. The Computerized Language Analysis (CLAN) system, developed for analyzing children’s language production, has recently been adopted for analysis of aphasic speech samples through AphasiaBank. However, the extent to which this automated system accurately quantifies lexical and morophosyntactic deficits, commonly seen in agrammatism, has not been explored. This study compared the CLAN with the Northwestern Narrative Language Analysis (NNLA) system, developed to evaluate linguistic deficits in aphasia. Results indicate that the CLAN does not identify important characteristics of agrammatic production. (100
Progressive resistance strength training for improving physical function in older adults
Liu, C., & Latham, N. K. (2009). Progressive resistance strength training for improving physical function in older adults. The Cochrane Database of Systematic Reviews, (3), CD002759. http://doi.org/10.1002/14651858.CD002759.pub
- …