29 research outputs found

    Mitochondrial and autophagic alterations in human-derived cell models of Parkinson's disease related to LRRK2 (G2019S) and GBA (N370S) mutations

    Get PDF
    [eng] Parkinson's disease (PD) is the second most common neurodegenerative disease, and the most common movement disorder in the world population. In most cases its aetiology is still unknown, however, mitochondrial alterations and autophagy deregulations are some of the molecular mechanisms that are altered in this disease. These molecular alterations of PD are not limited only to the destruction of dopaminergic neurons in the substantia nigra pars compacta, but they have also been described in the peripheral nervous system and the organs that it innervates. There is also evidence of the presence of other molecular alterations in diverse tissues, such as dysfunction of Complex I of the mitochondrial respiratory chain and accumulation of alpha synuclein in fibroblasts of patients with PD. One of the great difficulties the research and understanding of the mechanisms that lead to PD is the inaccessibility of the target tissue of the disease. In the best of cases, autopsy tissue from patients with advanced PD is available, leaving a question mark about the molecular processes of prodromal and early stages of the disease. Animal models have helped to unravel some questions, but the development of accessible and replicable cell models, preferably at low cost, is much needed. It is in this context that the cellular models obtained from PD patients and from asymptomatic carriers of genes associated with the disease are of great importance and require validation. The present thesis consists of the study of two cell models obtained from patients with PD associated with the LRRK2 mutation (G2019S), asymptomatic carriers of LRRK2 (G2019S) and homozygous and heterozygous carriers of GBA (N370S); which are the genes most frequently associated with familial PD and the most important genetic risk factor for PD, respectively. First, the mitochondrial and autophagic profile of fibroblasts derived from the skin of asymptomatic carriers of the LRRK2 (G2019S) mutation and with PD were analysed. The analysis was carried out under two conditions, keeping the fibroblasts in a standard culture medium (DMEM with 25mM glucose) and after subjecting them to a mitochondrial challenge for 24 hours (DMEM with 10mM galactose), in order to simulate the oxidative environment of neurons. dopaminergic. In this study, a genotype-phenotype correlation was confirmed in fibroblasts obtained from asymptomatic carriers of the LRRK2 (G2029S) mutation and patients with PD linked to this same mutation, and it was demonstrated that a mitochondrial and autophagic function profile allows to differentiate between groups. The second study explored the genotype-phenotype correlation in a cellular model characterized by neurospheres, a conglomerate of cells obtained from the dedifferentiation of human adipocytes into neuronal stem cells, and its relationship with the onset of macroautophagy in subjects carrying the mutation GBA (N370S). The main finding of this study is that mitochondrial dysfunction preceded alterations of macroautogphagic flux in subjects carrying the GBA (N370S) mutation. In conclusion, the study of asymptomatic subjects carrying mutations associated with PD represents a relevant study method that shows initial molecular alterations and the presence of compensatory mechanisms that can be studied for the development of preventive strategies and treatments in early stages of the disease.[spa] La enfermedad de Parkinson (EP) es el trastorno de movimiento más frecuente en la población mundial. Considerada mayoritariamente idiopática y multifactorial, alteraciones mitocondriales y en la regulación autofagica son algunos de los mecanismos moleculares que se han encontrado alterados en la etiopatología de la enfermedad. El descubrimiento de genes relacionados a formas familiares de EP, del cual LRRK2 es el más frecuente, y los genes que aumentan el riesgo de padecer la enfermedad, como GBA, han abierto un campo de estudio en el cual se pueden analizar los mecanismos moleculares que llevan a la neurodegeneración en formas genéticas de la EP. La presente tesis consiste en el estudio de dos modelos celulares obtenidos a partir de portadores asintomáticos de LRRK2(G2019S) (NMLRRK2(G2019S)), pacientes con EP asociada a la mutación LRRK2(G2019S) (PDLRRK2(G2019S)), así como de portadores homozigotos y heterozigotos de GBA(N370S). El primer estudio analizó el perfil mitocondrial y autofágico de fibroblastos NMLRRK2(G2019S) y PDLRRK2(G2019S). El análisis se realizó en dos condiciones, en un medio de cultivo estándar (DMEM, glucosa 25mM) y tras someterlos 24 horas a un reto mitocondrial (DMEM, galactosa 10mM), simulando el ambiente oxidativo de las neuronas dopaminérgicas. En este estudio se confirmó una correlación genotipo-fenotipo en fibroblastos obtenidos de ambos grupos y una función mitocondrial y autofágica que permite diferenciarlos entre ellos. El segundo estudio exploró la correlación genotipo-fenotipo en un modelo celular caracterizado por neuroesferas, un conglomerado de células obtenido a partir de la desdiferenciación de adipocitos humanos en células madres neuronales, y su relación con el inicio de la macroautofagia en sujetos portadores de la mutación GBA(N370S). El hallazgo principal de este segundo estudio es que la disfunción mitocondrial precede a las alteraciones del flujo macroautofágico en sujetos portadores de la mutación GBA(N370S). El estudio de sujetos asintomáticos portadores de mutaciones asociadas a PD representa un relevante método de estudio que evidencia alteraciones moleculares iniciales y la presencia de mecanismos compensatorios que pueden ser estudiados para el desarrollo de estrategias preventivas y tratamientos en lateabas tempranas de la enfermedad

    Bioenergetics and Autophagic imbalance in Patients-Derived Cell Models of Parkinson Disease Supports Systemic Dysfunction in Neurodegeneration

    Full text link
    Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide affecting 2-3% of the population over 65 years. This prevalence is expected to rise as life expectancy increases and diagnostic and therapeutic protocols improve. PD encompasses a multitude of clinical, genetic, and molecular forms of the disease. Even though the mechanistic of the events leading to neurodegeneration remain largely unknown, some molecular hallmarks have been repeatedly reported in most patients and models of the disease. Neuroinflammation, protein misfolding, disrupted endoplasmic reticulum-mitochondria crosstalk, mitochondrial dysfunction and consequent bioenergetic failure, oxidative stress and autophagy deregulation, are amongst the most commonly described. Supporting these findings, numerous familial forms of PD are caused by mutations in genes that are crucial for mitochondrial and autophagy proper functioning. For instance, late and early onset PD associated to mutations in Leucine-rich repeat kinase 2 (LRRK2) and Parkin (PRKN) genes, responsible for the most frequent dominant and recessive inherited forms of PD, respectively, have emerged as promising examples of disease due to their established role in commanding bioenergetic and autophagic balance. Concomitantly, the development of animal and cell models to investigate the etiology of the disease, potential biomarkers and therapeutic approaches are being explored. One of the emerging approaches in this context is the use of patient's derived cells models, such as skin-derived fibroblasts that preserve the genetic background and some environmental cues of the patients. An increasing number of reports in these PD cell models postulate that deficient mitochondrial function and impaired autophagic flux may be determinant in PD accelerated nigral cell death in terms of limitation of cell energy supply and accumulation of obsolete and/or unfolded proteins or dysfunctional organelles. The reliance of neurons on mitochondrial oxidative metabolism and their post-mitotic nature, may explain their increased vulnerability to undergo degeneration upon mitochondrial challenges or autophagic insults. In this scenario, proper mitochondrial function and turnover through mitophagy, are gaining in strength as protective targets to prevent neurodegeneration, together with the use of patient-derived fibroblasts to further explore these events. These findings point out the presence of molecular damage beyond the central nervous system (CNS) and proffer patient-derived cell platforms to the clinical and scientific community, which enable the study of disease etiopathogenesis and therapeutic approaches focused on modifying the natural history of PD through, among others, the enhancement of mitochondrial function and autophagy

    Two Novel Variants in YARS2 Gene Are Responsible for an Extended MLASA Phenotype with Pancreatic Insufficiency

    Get PDF
    Pathogenic variants in the mitochondrial tyrosyl-tRNA synthetase gene (YARS2) were associated with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). However, patients can present mitochondrial myopathy, with exercise intolerance and muscle weakness, leading from mild to lethal phenotypes. Genes implicated in mtDNA replication were studied by Next Gener ation Sequencing (NGS) and whole exome sequence with the TruSeq Rapid Exome kit (Illumina, San Diego, CA, USA). Mitochondrial protein translation was studied following the Sasarman and Shoubridge protocol and oxygen consumption rates with Agilent Seahorse XF24 Analyzer Mi tostress Test, (Agilent, Santa Clara, CA, USA). We report two siblings with two novel compound heterozygous pathogenic variants in YARS2 gene: a single nucleotide deletion in exon 1, c.314delG (p.(Gly105Alafs*4)), which creates a premature stop codon in the amino acid 109, and a single nu cleotide change in exon 5 c.1391T>C (p.(Ile464Thr)), that cause a missense variant in amino acid 464. We demonstrate the pathogenicity of these new variants associated with reduced YARS2 mRNA transcript, reduced mitochondrial protein translation and dysfunctional organelle function. These pathogenic variants are responsible for late onset MLASA, herein accompanied by pancreatic insuf ficiency, observed in both brothers, clinically considered as Pearson's syndrome. Molecular study of YARS2 gene should be considered in patients presenting Pearson's syndrome characteristics and MLASA related phenotypes

    GBA mutation promotes early mitochondrial dysfunction in 3D neurosphere models.

    Get PDF
    Glucocerebrosidase (GBA) mutations are the most important genetic risk factor for the development of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase). Loss-of-GCase activity in cellular models has implicated lysosomal and mitochondrial dysfunction in PD disease pathogenesis, although the exact mechanisms remain unclear. We hypothesize that GBA mutations impair mitochondria quality control in a neurosphere model.We have characterized mitochondrial content, mitochondrial function and macroautophagy flux in 3D-neurosphere-model derived from neural crest stem cells containing heterozygous and homozygous N370SGBA mutations, under carbonyl cyanide-m-chlorophenyl-hydrazine (CCCP)- induced mitophagy.Our findings on mitochondrial markers and ATP levels indicate that mitochondrial accumulation occurs in mutant N370SGBA neurospheres under basal conditions, and clearance of depolarised mitochondria is impaired following CCCP-treatment. A significant increase in TFEB-mRNA levels, the master regulator of lysosomal and autophagy genes, may explain an unchanged macroautophagy flux in N370SGBA neurospheres. PGC1α-mRNA levels were also significantly increased following CCCP-treatment in heterozygote, but not homozygote neurospheres, and might contribute to the increased mitochondrial content seen in cells with this genotype, probably as a compensatory mechanism that is absent in homozygous lines.Mitochondrial impairment occurs early in the development of GCase-deficient neurons. Furthermore, impaired turnover of depolarised mitochondria is associated with early mitochondrial dysfunction.In summary, the presence of GBA mutation may be associated with higher levels of mitochondrial content in homozygous lines and lower clearance of damaged mitochondria in our neurosphere model

    HIV-1 promonocytic and lymphoid cell lines: an in vitro model of in vivo mitochondrial and apoptotic lesion.

    Get PDF
    To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV-1)-infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro-mitochondrial or anti-apoptotic strategies as in vitro cell platforms to deal with HIV-infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt-PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial-nuclear encoded subunits II-IV of cytochrome-c-oxidase (COXII-COXIV), respectively, as well as mitochondrial apoptotic events [voltage-dependent-anion-channel-1(VDAC-1)-content and caspase-9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1-assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC-1 and caspase-9 content were sharply decreased in both chronic HIV-1-infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV-chronicity, to test novel therapeutic options or to study HIV reservoirs

    Exhaustion of mitochondrial and autophagic reserve may contribute to the development of LRRK2 G2019S -Parkinson's disease

    Get PDF
    BACKGROUND: Mutations in leucine rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). Mitochondrial and autophagic dysfunction has been described as etiologic factors in different experimental models of PD. We aimed to study the role of mitochondria and autophagy in LRRK2 G2019S -mutation, and its relationship with the presence of PD-symptoms. METHODS: Fibroblasts from six non-manifesting LRRK2 G2019S -carriers (NM-LRRK2 G2019S ) and seven patients with LRRK2 G2019S -associated PD (PD-LRRK2 G2019S ) were compared to eight healthy controls (C). An exhaustive assessment of mitochondrial performance and autophagy was performed after 24-h exposure to standard (glucose) or mitochondrial-challenging environment (galactose), where mitochondrial and autophagy impairment may be heightened. RESULTS: A similar mitochondrial phenotype of NM-LRRK2 G2019S and controls, except for an early mitochondrial depolarization (54.14% increased, p = 0.04), was shown in glucose. In response to galactose, mitochondrial dynamics of NM-LRRK2 G2019S improved (- 17.54% circularity, p = 0.002 and + 42.53% form factor, p = 0.051), probably to maintain ATP levels over controls. A compromised bioenergetic function was suggested in PD-LRRK2 G2019S when compared to controls in glucose media. An inefficient response to galactose and worsened mitochondrial dynamics (- 37.7% mitochondrial elongation, p = 0.053) was shown, leading to increased oxidative stress. Autophagy initiation (SQTSM/P62) was upregulated in NM-LRRK2 G2019S when compared to controls (glucose + 118.4%, p = 0.014; galactose + 114.44%, p = 0.009,) and autophagosome formation increased in glucose media. Despite of elevated SQSTM1/P62 levels of PD-NM G2019S when compared to controls (glucose + 226.14%, p = 0.04; galactose + 78.5%, p = 0.02), autophagosome formation was deficient in PD-LRRK2 G2019S when compared to NM-LRRK2 G2019S (- 71.26%, p = 0.022). CONCLUSIONS: Enhanced mitochondrial performance of NM-LRRK2 G2019S in mitochondrial-challenging conditions and upregulation of autophagy suggests that an exhaustion of mitochondrial bioenergetic and autophagic reserve, may contribute to the development of PD in LRRK2 G2019S mutation carriers

    Mitochondrial Toxicogenomics for Antiretroviral Management: HIV Post-exposure Prophylaxis in Uninfected Patients

    Get PDF
    Background: Mitochondrial genome has been used across multiple fields in research, diagnosis, and toxicogenomics. Several compounds damage mitochondrial DNA (mtDNA), including biological and therapeutic agents like the human immunodeficiency virus (HIV) but also its antiretroviral treatment, leading to adverse clinical manifestations. HIV-infected and treated patients may show impaired mitochondrial and metabolic profile, but specific contribution of viral or treatment toxicity remains elusive. The evaluation of HIV consequences without treatment interference has been performed in naïve (non-treated) patients, but assessment of treatment toxicity without viral interference is usually restricted to in vitro assays. Objective: The objective of the present study is to determine whether antiretroviral treatment without HIV interference can lead to mtDNA disturbances. We studied clinical, mitochondrial, and metabolic toxicity in non-infected healthy patients who received HIV post-exposure prophylaxis (PEP) to prevent further infection. We assessed two different PEP regimens according to their composition to ascertain if they were the cause of tolerability issues and derived toxicity. Methods: We analyzed reasons for PEP discontinuation and main secondary effects of treatment withdrawal, mtDNA content from peripheral blood mononuclear cells and metabolic profile, before and after 28 days of PEP, in 23 patients classified depending on PEP composition: one protease inhibitor (PI) plus Zidovudine/Lamivudine (PI plus AZT + 3TC; n = 9) or PI plus Tenofovir/Emtricitabine (PI plus TDF + FTC; n = 14). Results: Zidovudine-containing-regimens showed an increased risk for drug discontinuation (RR = 9.33; 95% CI = 1.34-65.23) due to adverse effects of medication related to gastrointestinal complications. In the absence of metabolic disturbances, 4-week PEP containing PI plus AZT + 3TC led to higher mitochondrial toxicity (−17.9 ± 25.8 decrease in mtDNA/nDNA levels) than PI plus TDF + FTC (which increased by 43.2 ± 24.3 units mtDNA/nDNA; p < 0.05 between groups). MtDNA changes showed a significant and negative correlation with baseline alanine transaminase levels (p < 0.05), suggesting that a proper hepatic function may protect from antiretroviral toxicity. Conclusions: In absence of HIV infection, preventive short antiretroviral treatment can cause secondary effects responsible for treatment discontinuation and subclinical mitochondrial damage, especially pyrimidine analogs such as AZT, which still rank as the alternative option and first choice in certain cohorts for PEP. Forthcoming efforts should be focused on launching new strategies with safer clinical and mitotoxic profile

    Mitochondrial and autophagic alterations in skin fibroblasts from Parkinson disease patients with Parkin mutations.

    Get PDF
    PRKN encodes an E3-ubiquitin-ligase involved in multiple cell processes including mitochondrial homeostasis and autophagy. Previous studies reported alterations of mitochondrial function in fibroblasts from patients with PRKN mutation-associated Parkinson's disease (PRKN-PD) but have been only conducted in glycolytic conditions, potentially masking mitochondrial alterations. Additionally, autophagy flux studies in this cell model are missing.We analyzed mitochondrial function and autophagy in PRKN-PD skin-fibroblasts (n=7) and controls (n=13) in standard (glucose) and mitochondrial-challenging (galactose) conditions.In glucose, PRKN-PD fibroblasts showed preserved mitochondrial bioenergetics with trends to abnormally enhanced mitochondrial respiration that, accompanied by decreased CI, may account for the increased oxidative stress. In galactose, PRKN-PD fibroblasts exhibited decreased basal/maximal respiration vs. controls and reduced mitochondrial CIV and oxidative stress compared to glucose, suggesting an inefficient mitochondrial oxidative capacity to meet an extra metabolic requirement. PRKN-PD fibroblasts presented decreased autophagic flux with reduction of autophagy substrate and autophagosome synthesis in both conditions.The alterations exhibited under neuron-like oxidative environment (galactose), may be relevant to the disease pathogenesis potentially explaining the increased susceptibility of dopaminergic neurons to undergo degeneration. Abnormal PRKN-PD phenotype supports the usefulness of fibroblasts to model disease and the view of PD as a systemic disease where molecular alterations are present in peripheral tissues

    Cardiac and placental mitochondrial characterization in a rabbit model of intrauterine growth restriction

    Get PDF
    BACKGROUND: Intrauterine growth restriction (IUGR) is associated with cardiovascular remodeling persisting into adulthood. Mitochondrial bioenergetics, essential for embryonic development and cardiovascular function, are regulated by nuclear effectors as sirtuins. A rabbit model of IUGR and cardiovascular remodeling was generated, in which heart mitochondrial alterations were observed by microscopic and transcriptomic analysis. We aimed to evaluate if such alterations are translated at a functional mitochondrial level to establish the etiopathology and potential therapeutic targets for this obstetric complication. METHODS: Hearts and placentas from 16 IUGR-offspring and 14 controls were included to characterize mitochondrial function. RESULTS: Enzymatic activities of complexes II, IV and II + III in IUGR-hearts (-11.96 ± 3.16%; -15.58 ± 5.32%; -14.73 ± 4.37%; p < 0.05) and II and II + III in IUGR-placentas (-17.22 ± 3.46%; p < 0.005 and -29.64 ± 4.43%; p < 0.001) significantly decreased. This was accompanied by a not significant reduction in CI-stimulated oxygen consumption and significantly decreased complex II SDHB subunit expression in placenta (-44.12 ± 5.88%; p < 0.001). Levels of mitochondrial content, Coenzyme Q and cellular ATP were conserved. Lipid peroxidation significantly decreased in IUGR-hearts (-39.02 ± 4.35%; p < 0.001), but not significantly increased in IUGR-placentas. Sirtuin3 protein expression significantly increased in IUGR-hearts (84.21 ± 31.58%; p < 0.05) despite conserved anti-oxidant SOD2 protein expression and activity in both tissues. CONCLUSIONS: IUGR is associated with cardiac and placental mitochondrial CII dysfunction. Up-regulated expression of Sirtuin3 may explain attenuation of cardiac oxidative damage and preserved ATP levels under CII deficiency. GENERAL SIGNIFICANCE: These findings may allow the design of dietary interventions to modulate Sirtuin3 expression and consequent regulation of mitochondrial imbalance associated with IUGR and derived cardiovascular remodeling

    Disrupted mitochondrial and metabolic plasticity underlie comorbidity between age-Related and degenerative disorders as parkinson disease and type 2 diabetes mellitus.

    Full text link
    Idiopathic Parkinson's disease (iPD) and type 2 diabetes mellitus (T2DM) are chronic, multisystemic, and degenerative diseases associated with aging, with eventual epidemiological co-morbidity and overlap in molecular basis. This study aims to explore if metabolic and mitochondrial alterations underlie the previously reported epidemiologic and clinical co-morbidity from a molecular level. To evaluate the adaptation of iPD to a simulated pre-diabetogenic state, we exposed primary cultured fibroblasts from iPD patients and controls to standard (5 mM) and high (25 mM) glucose concentrations to further characterize metabolic and mitochondrial resilience. iPD fibroblasts showed increased organic and amino acid levels related to mitochondrial metabolism with respect to controls, and these differences were enhanced in high glucose conditions (citric, suberic, and sebacic acids levels increased, as well as alanine, glutamate, aspartate, arginine, and ornithine amino acids; p-values between 0.001 and 0.05). The accumulation of metabolites in iPD fibroblasts was associated with (and probably due to) the concomitant mitochondrial dysfunction observed at enzymatic, oxidative, respiratory, and morphologic level. Metabolic and mitochondrial plasticity of controls was not observed in iPD fibroblasts, which were unable to adapt to different glucose conditions. Impaired metabolism and mitochondrial activity in iPD may limit energy supply for cell survival. Moreover, reduced capacity to adapt to disrupted glucose balance characteristic of T2DM may underlay the co-morbidity between both diseases. Conclusions: Fibroblasts from iPD patients showed mitochondrial impairment, resulting in the accumulation of organic and amino acids related to mitochondrial metabolism, especially when exposed to high glucose. Mitochondrial and metabolic defects down warding cell plasticity to adapt to changing glucose bioavailability may explain the comorbidity between iPD and T2DM
    corecore