17,979 research outputs found

    Direct and Indirect Detection of Neutralino Dark Matter and Collider Signatures in an SO(10)SO(10) Model with Two Intermediate Scales

    Full text link
    We investigate the detectability of neutralino Dark Matter via direct and indirect searches as well as collider signatures of an SO(10)SO(10) model with two intermediate scales. We compare the direct Dark Matter detection cross section and the muon flux due to neutralino annihilation in the Sun that we obtain in this model with mSUGRA predictions and with the sensitivity of current and future experiments. In both cases, we find that the detectability improves as the model deviates more from mSUGRA. In order to study collider signatures, we choose two benchmark points that represent the main phenomenological features of the model: a lower value of μ|\mu| and reduced third generation sfermion masses due to extra Yukawa coupling contributions in the Renormalization Group Equations, and increased first and second generation slepton masses due to new gaugino loop contributions. We show that measurements at the LHC can distinguish this model from mSUGRA in both cases, by counting events containing leptonically decaying Z0Z^0 bosons, heavy neutral Higgs bosons, or like--sign lepton pairs.Comment: 21 pages, 16 figure

    TINKERING WITH VALUATION ESTIMATES: IS THERE A FUTURE FOR WILLINGNESS TO ACCEPT MEASURES?

    Get PDF
    This paper examines various methods proposed in the literature to calibrate welfare measures, especially willingness to accept and willingness to pay, derived from contingent valuation surveys. Through simulation and a case study, we hope to provide guidance for empirical welfare measurement in response to the theoretical dispute regarding WTA/WTP disparities.Resource /Energy Economics and Policy,

    Hybrid bounds for twisted L-functions

    Get PDF
    The aim of this paper is to derive bounds on the critical line Rs 1/2 for L- functions attached to twists f circle times chi of a primitive cusp form f of level N and a primitive character modulo q that break convexity simultaneously in the s and q aspects. If f has trivial nebentypus, it is shown that L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-4/5(vertical bar s vertical bar q)(1/2-1/40), where the implied constant depends only on epsilon > 0 and the archimedean parameter of f. To this end, two independent methods are employed to show L(f circle times chi, s) << (N vertical bar s vertical bar q)(epsilon) N-1/2 vertical bar S vertical bar(1/2)q(3/8) and L(g,s) << D-2/3 vertical bar S vertical bar(5/12) for any primitive cusp form g of level D and arbitrary nebentypus (not necessarily a twist f circle times chi of level D vertical bar Nq(2))

    Dielectric properties of nanosilica/low-density polyethylene composites: The surface chemistry of nanoparticles and deep traps induced by nanoparticles

    Get PDF
    Four kinds of nanosilica particles with different surface modification were employed to fabricate low-density polyethylene (LDPE) composites using melt mixing and hot molding methods. The surface chemistry of modified nanosilica was analyzed by X-ray photoelectron spectroscopy. All silica nanoparticles were found to suppress the space charge injection and accumulation, increase the volume resistivity, decrease the permittivity and dielectric loss factor at low frequencies, and decrease the dielectric breakdown strength of the LDPE polymers. The modified nanoparticles, in general, showed better dielectric properties than the unmodified ones. It was found that the carrier mobility, calculated from J–V curves using the Mott-Gurney equation, was much lower for the nanocomposites than for the neat LDPE

    Sub-monolayer nucleation and growth of complex oxide heterostructures at high supersaturation and rapid flux modulation

    Full text link
    We report on the non-trivial nanoscale kinetics of the deposition of novel complex oxide heterostructures composed of a unit-cell thick correlated metal LaNiO3 and dielectric LaAlO3. The multilayers demonstrate exceptionally good crystallinity and surface morphology maintained over the large number of layers, as confirmed by AFM, RHEED, and synchrotron X-ray diffraction. To elucidate the physics behind the growth, the temperature of the substrate and the deposition rate were varied over a wide range and the results were treated in the framework of a two-layer model. These results are of fundamental importance for synthesis of new phases of complex oxide heterostructures.Comment: 13 pages, 6 figure
    corecore