9,040 research outputs found

    A new automated workflow for 3D character creation based on 3D scanned data

    Get PDF
    In this paper we present a new workflow allowing the creation of 3D characters in an automated way that does not require the expertise of an animator. This workflow is based of the acquisition of real human data captured by 3D body scanners, which is them processed to generate firstly animatable body meshes, secondly skinned body meshes and finally textured 3D garments

    A dual interpolation boundary face method for 3D elasticity

    Get PDF
    The dual interpolation boundary face method (DiBFM) proposed recently has been successfully applied to solve various problems in two dimensions. Compared with the conventional boundary element method (BEM), it has been proved that the DiBFM has the advantages of higher accuracy, convergence rate and computational efficiency. In addition, the DiBFM is suitable to unify the conforming and nonconforming elements in the BEM implementation, as well as to approximate both continuous and discontinuous fields. Moreover, there are no geometric errors by the DiBFM in the computational process. In this paper, the DiBFM is extended successfully to solve the elasticity problems in three-dimensions (3D) with formulations derived in details. A number of numerical examples are presented in order to validate the accuracy and convergence rate of the proposed method

    Rayleigh scattering in fused silica samples for gravitational wave detectors

    No full text
    Laser interferometer gravitational wave detectors require very high optical quality test masses. We report the bulk Rayleigh scattering in high quality fused silica samples. Results show that the scattering of the high quality fused silica is similar for various grades of fused silica from Heraeus. The total integrated scattering is about 0.7 ppm cm− 1at 1064 nm wavelength, which agrees with the theoretical value calculated using known fused silica parameters. All samples show Rayleigh scattering ratio inhomogeneity of ~ 4%

    Effective-mass Klein-Gordon Equation for non-PT/non-Hermitian Generalized Morse Potential

    Full text link
    The one-dimensional effective-mass Klein-Gordon equation for the real, and non-\textrm{PT}-symmetric/non-Hermitian generalized Morse potential is solved by taking a series expansion for the wave function. The energy eigenvalues, and the corresponding eigenfunctions are obtained. They are also calculated for the constant mass case.Comment: 14 page

    The Radiated Energy Budget of Chromospheric Plasma in a Major Solar Flare Deduced From Multi-Wavelength Observations

    Get PDF
    This paper presents measurements of the energy radiated by the lower solar atmosphere, at optical, UV, and EUV wavelengths, during an X-class solar flare (SOL2011-02-15T01:56) in response to an injection of energy assumed to be in the form of nonthermal electrons. Hard X-ray observations from RHESSI were used to track the evolution of the parameters of the nonthermal electron distribution to reveal the total power contained in flare accelerated electrons. By integrating over the duration of the impulsive phase, the total energy contained in the nonthermal electrons was found to be >2×1031>2\times10^{31} erg. The response of the lower solar atmosphere was measured in the free-bound EUV continua of H I (Lyman), He I, and He II, plus the emission lines of He II at 304\AA\ and H I (Lyα\alpha) at 1216\AA\ by SDO/EVE, the UV continua at 1600\AA\ and 1700\AA\ by SDO/AIA, and the WL continuum at 4504\AA, 5550\AA, and 6684\AA, along with the Ca II H line at 3968\AA\ using Hinode/SOT. The summed energy detected by these instruments amounted to 3×1030\sim3\times10^{30} erg; about 15% of the total nonthermal energy. The Lyα\alpha line was found to dominate the measured radiative losses. Parameters of both the driving electron distribution and the resulting chromospheric response are presented in detail to encourage the numerical modelling of flare heating for this event, to determine the depth of the solar atmosphere at which these line and continuum processes originate, and the mechanism(s) responsible for their generation.Comment: 14 pages, 18 figures. Accepted for publication in Astrophysics Journa

    On the global well-posedness of a class of Boussinesq- Navier-Stokes systems

    Full text link
    In this paper we consider the following 2D Boussinesq-Navier-Stokes systems \partial_{t}u+u\cdot\nabla u+\nabla p+ |D|^{\alpha}u &= \theta e_{2} \partial_{t}\theta+u\cdot\nabla \theta+ |D|^{\beta}\theta &=0 \quad with divu=0\textrm{div} u=0 and 0<β<α<10<\beta<\alpha<1. When 664<α<1\frac{6-\sqrt{6}}{4}<\alpha< 1, 1α<βf(α)1-\alpha<\beta\leq f(\alpha) , where f(α)f(\alpha) is an explicit function as a technical bound, we prove global well-posedness results for rough initial data.Comment: 23page

    Spin-wave scattering at low temperatures in manganite films

    Full text link
    The temperature TT and magnetic field HH dependence of the resistivity ρ\rho has been measured for La0.8y_{0.8-y}Sr0.2_{0.2}MnO3_{3} (y=0 and 0.128) films grown on (100) SrTiO3_{3} substrates. The low-temperature ρ\rho in the ferromagnetic metallic region follows well ρ(H,T)=ρ0(H)+A(H)ωs/sinh(ωs/2kBT)+B(H)T7/2\rho (H,T)=\rho _{0}(H)+A(H)\omega_{s}/\sinh (\hbar \omega_{s}/2k_{B}T)+B(H)T^{7/2} with ρ0\rho _{0} being the residual resistivity. We attribute the second and third term to small-polaron and spin-wave scattering, respectively. Our analysis based on these scattering mechanisms also gives the observed difference between the metal-insulator transition temperatures of the films studied. Transport measurements in applied magnetic field further indicate that spin-wave scattering is a key transport mechanism at low temperatures.Comment: 5 pages, 4 figures. to appear in Phys. Rev.
    corecore