10 research outputs found

    Graphene growth on Ge(100)/Si(100) substrates by CVD method

    Get PDF
    The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging. To overcome these difficulties and reach the set goals, we proposed growth of high quality graphene layers by the CVD method on Ge(100)/Si(100) wafers. In addition, a stochastic model was applied in order to describe the graphene growth process on the Ge(100)/Si(100) substrate and to determine the direction of further processes. As a result, high quality graphene was grown, which was proved by Raman spectroscopy results, showing uniform monolayer films with FWHM of the 2D band of 32 cm−1

    Profiling and imaging of forensic evidence – a pan-European forensic round robin study part 1: document forgery

    Get PDF
    The forensic scenario, on which the round robin study was based, simulated a suspected intentional manipulation of a real estate rental agreement consisting of a total of three pages. The aims of this study were to (i) establish the amount and reliability of information extractable from a single type of evidence and to (ii) provide suggestions on the most suitable combination of compatible techniques for a multi-modal imaging approach to forgery detection. To address these aims, seventeen laboratories from sixteen countries were invited to answer the following tasks questions: (i) which printing technique was used? (ii) were the three pages printed with the same printer? (iii) were the three pages made from the same paper? (iv) were the three pages originally stapled? (v) were the headings and signatures written with the same ink? and (vi) were headings and signatures of the same age on all pages? The methods used were classified into the following categories: Optical spectroscopy, including multispectral imaging, smartphone mapping, UV-luminescence and LIBS; Infrared spectroscopy, including Raman and FTIR (micro-)spectroscopy; X-ray spectroscopy, including SEM-EDX, PIXE and XPS; Mass spectrometry, including ICPMS, SIMS, MALDI and LDIMS; Electrostatic imaging, as well as non-imaging methods, such as non-multimodal visual inspection, (micro-)spectroscopy, physical testing and thin layer chromatography. The performance of the techniques was evaluated as the proportion of discriminated sample pairs to all possible sample pairs. For the undiscriminated sample pairs, a distinction was made between undecidability and false positive claims. It was found that none of the methods used were able to solve all tasks completely and/or correctly and that certain methods were a priori judged unsuitable by the laboratories for some tasks. Correct results were generally achieved for the discrimination of printer toners, whereas incorrect results in the discrimination of inks. For the discrimination of paper, solid state analytical methods proved to be superior to mass spectrometric methods. None of the participating laboratories deemed addressing ink age feasible. It was concluded that correct forensic statements can only be achieved by the complementary application of different methods and that the classical approach of round robin studies to send standardised subsamples to the participants is not feasible for a true multimodal approach if the techniques are not available at one location

    Ni(111) Thin Layers Recrystallization Studied by SEM, EBSD and AFM

    No full text

    Multielemental Analysis of Various Kinds of Whisky

    No full text
    Whisky (whiskey) consists of many trace elements coming from the raw materials used in its fermentation, distillation and maturation processes. These ingredients assure the exceptional organoleptic characteristics of the beverage. Their analysis is important to better control the stages of fermentation, distillation, taste repeatability and for product quality assurance as well as from the brand protection point of view. This article presents the usefulness of modern analytical techniques based on elemental analysis. ICP mass spectrometry and CV atomic absorption spectroscopy were applied to distinguish whisky produced in Scotland from whisky coming from Ireland and the United States. The collected semi-quantitative data were used for multivariate analysis performed using the Statistica 10.0 software. The results showed that Irish whiskey is characterized by quite a high amount of Ba and Ti compared with other samples, which made it possible to distinguish this sample from the others. No strict correlation was found between the type of whisky and the amount of trace elements, however, the projection of objects on the first two components revealed that single malt samples created one cluster

    Oxy-Steam Reforming of Liquefied Natural Gas (LNG) on Mono- and Bimetallic (Ag, Pt, Pd or Ru)/Ni Catalysts

    No full text
    This work presents, for the first time, the comparative physicochemical and reactivity studies of a range of bimetallic Pt-Ni, Pd-Ni, Ru-Ni, and Ag-Ni catalysts in the oxy-steam reforming (OSR) of liquefied natural gas (LNG) reaction towards hydrogen generation. In order to achieve the intended purpose of this work, a binary oxide CeO2·ZrO2 (1:2) support was prepared via a co-precipitation method. The catalysts’ physicochemical properties were studied using X-ray diffraction (XRD), BET, TPR-H2, TPD-NH3, SEM-EDS and XPS methods. The highest activity in the studied process was exhibited by the 1%Pt-5%Ni catalyst supported on CeO2·ZrO2 (1:2) system. The highest activity of this system is explained by the specific interactions occurring between the components of the active phase and between the components of the active phase and the carrier itself. The activity results showed that this catalytic system exhibited above 71% of the methane conversion at 600 °C and 60% yield of hydrogen formation. The results of this work demonstrate that the Pt-Ni and Ru-Ni catalytic systems hold promise to be applied in the production of hydrogen to power solid oxide fuel cells

    Damage accumulation studies in ion-irradiated oxides: Current status and new perspectives

    No full text
    International audienceThe main purpose of this paper is to summarize our results obtained during research on the radiation behavior of oxides. The paper presents various methods of damage accumulation in irradiated oxides with the special emphasis on correlations between channeling, luminescence and Raman spectroscopy measurements as well as the possibility to obtain quantitative data on polycrystalline materials. The results are interpreted in terms of Multi Step Damage Accumulation model. Without pretending to give a full review of the current trends concerning these studies, we intend to present both a reflection about recent results and a few options for next investigations. This article can thus be regarded as the opening of a discussion on further directions of the research to be conducted on the topic of radiation damage formation in advanced materials for nuclear applications

    An Evaluation of the Hydrolytic Stability of Selected Experimental Dental Matrices and Composites

    No full text
    Materials with potential use as dental restoration should be evaluated in an aggressive environment. Such accelerated aging is widely used in other industries and allows the assessment of service life. In the presented study, three neat resins (UDMA/Bis-GMA/TEGDMA 70/10/20 wt.%, UDMA/Bis-GMA/TEGDMA 40/40/20 wt.% and UDMA/Bis-EMA/TEGDMA 40/40/20 wt.%) and three composites based on these matrices were tested before and after aging protocols (I-7500 cycles, 5 °C and 55 °C, water and 7 days, 60 °C, 0.1 M NaOH; II-5 days, 55 °C, water and 7 days, 60 °C, 0.1 M NaOH). Flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) were determined. Applied aging protocols resulted in a decrease in the value of the FS, DTS and HV. Larger changes were noticed for the neat resins. Materials in which the content of bis-GMA was lower or substituted by bis-EMA showed better resistance to degradation. The choice of mixtures with monomers characterized by lower sorption values may favorably affect hydrolytic stability. It was shown that for composites there was a drastic decrease in hardness, which suggests a more superficial effect of the used protocols. However, degradation of the surface layer can result in a growing problem over time given that the mastication processes are an inherent element in the oral environment
    corecore