309 research outputs found

    New measure of electron correlation

    Full text link
    We propose to quantify the "correlation" inherent in a many-electron (or many-fermion) wavefunction by comparing it to the unique uncorrelated state that has the same single-particle density operator as it does.Comment: Final version to appear in PR

    Non-additivity of quantum capacity for multiparty communication channels

    Full text link
    We investigate multiparty communication scenarios where information is sent from several sender to several receivers. We establish a relation between the quantum capacity of multiparty communication channels and their distillability properties which enables us to show that the quantum capacity of such channels is not additive.Comment: 4 pages, 1 figur

    On the role of entanglement in quantum computational speed-up

    Get PDF
    For any quantum algorithm operating on pure states we prove that the presence of multi-partite entanglement, with a number of parties that increases unboundedly with input size, is necessary if the quantum algorithm is to offer an exponential speed-up over classical computation. Furthermore we prove that the algorithm can be classically efficiently simulated to within a prescribed tolerance \eta even if a suitably small amount of global entanglement (depending on \eta) is present. We explicitly identify the occurrence of increasing multi-partite entanglement in Shor's algorithm. Our results do not apply to quantum algorithms operating on mixed states in general and we discuss the suggestion that an exponential computational speed-up might be possible with mixed states in the total absence of entanglement. Finally, despite the essential role of entanglement for pure state algorithms, we argue that it is nevertheless misleading to view entanglement as a key resource for quantum computational power.Comment: Main proofs simplified. A few further explanatory remarks added. 22 pages, plain late

    Off-diagonal geometric phase for mixed states

    Full text link
    We extend the off-diagonal geometric phase [Phys. Rev. Lett. {\bf 85}, 3067 (2000)] to mixed quantal states. The nodal structure of this phase in the qubit (two-level) case is compared with that of the diagonal mixed state geometric phase [Phys. Rev. Lett. {\bf 85}, 2845 (2000)]. Extension to higher dimensional Hilbert spaces is delineated. A physical scenario for the off-diagonal mixed state geometric phase in polarization-entangled two-photon interferometry is proposed.Comment: small corrections; journal reference adde

    On quantum coding for ensembles of mixed states

    Full text link
    We consider the problem of optimal asymptotically faithful compression for ensembles of mixed quantum states. Although the optimal rate is unknown, we prove upper and lower bounds and describe a series of illustrative examples of compression of mixed states. We also discuss a classical analogue of the problem.Comment: 23 pages, LaTe

    Quantum complexities of ordered searching, sorting, and element distinctness

    Full text link
    We consider the quantum complexities of the following three problems: searching an ordered list, sorting an un-ordered list, and deciding whether the numbers in a list are all distinct. Letting N be the number of elements in the input list, we prove a lower bound of \frac{1}{\pi}(\ln(N)-1) accesses to the list elements for ordered searching, a lower bound of \Omega(N\log{N}) binary comparisons for sorting, and a lower bound of \Omega(\sqrt{N}\log{N}) binary comparisons for element distinctness. The previously best known lower bounds are {1/12}\log_2(N) - O(1) due to Ambainis, \Omega(N), and \Omega(\sqrt{N}), respectively. Our proofs are based on a weighted all-pairs inner product argument. In addition to our lower bound results, we give a quantum algorithm for ordered searching using roughly 0.631 \log_2(N) oracle accesses. Our algorithm uses a quantum routine for traversing through a binary search tree faster than classically, and it is of a nature very different from a faster algorithm due to Farhi, Goldstone, Gutmann, and Sipser.Comment: This new version contains new results. To appear at ICALP '01. Some of the results have previously been presented at QIP '01. This paper subsumes the papers quant-ph/0009091 and quant-ph/000903

    Simple Realization Of The Fredkin Gate Using A Series Of Two-body Operators

    Get PDF
    The Fredkin three-bit gate is universal for computational logic, and is reversible. Classically, it is impossible to do universal computation using reversible two-bit gates only. Here we construct the Fredkin gate using a combination of six two-body reversible (quantum) operators.Comment: Revtex 3.0, 7 pages, 3 figures appended at the end, please refer to the comment lines at the beginning of the manuscript for reasons of replacemen

    Quantum data processing and error correction

    Get PDF
    This paper investigates properties of noisy quantum information channels. We define a new quantity called {\em coherent information} which measures the amount of quantum information conveyed in the noisy channel. This quantity can never be increased by quantum information processing, and it yields a simple necessary and sufficient condition for the existence of perfect quantum error correction.Comment: LaTeX, 20 page

    On classical models of spin

    Full text link
    The reason for recalling this old paper is the ongoing discussion on the attempts of circumventing certain assumptions leading to the Bell theorem (Hess-Philipp, Accardi). If I correctly understand the intentions of these Authors, the idea is to make use of the following logical loophole inherent in the proof of the Bell theorem: Probabilities of counterfactual events A and A' do not have to coincide with actually measured probabilities if measurements of A and A' disturb each other, or for any other fundamental reason cannot be performed simulaneously. It is generally believed that in the context of classical probability theory (i.e. realistic hidden variables) probabilities of counterfactual events can be identified with those of actually measured events. In the paper I give an explicit counterexample to this belief. The "first variation" on the Aerts model shows that counterfactual and actual problems formulated for the same classical system may be unrelated. In the model the first probability does not violate any classical inequality whereas the second does. Pecularity of the Bell inequality is that on the basis of an in principle unobservable probability one derives probabilities of jointly measurable random variables, the fact additionally obscuring the logical meaning of the construction. The existence of the loophole does not change the fact that I was not able to construct a local model violating the inequality with all the other loopholes eliminated.Comment: published as Found. Phys. Lett. 3 (1992) 24

    Effects of motion in cavity QED

    Get PDF
    We consider effects of motion in cavity quantum electrodynamics experiments where single cold atoms can now be observed inside the cavity for many Rabi cycles. We discuss the timescales involved in the problem and the need for good control of the atomic motion, particularly the heating due to exchange of excitation between the atom and the cavity, in order to realize nearly unitary dynamics of the internal atomic states and the cavity mode which is required for several schemes of current interest such as quantum computing. Using a simple model we establish ultimate effects of the external atomic degrees of freedom on the action of quantum gates. The perfomance of the gate is characterized by a measure based on the entanglement fidelity and the motional excitation caused by the action of the gate is calculated. We find that schemes which rely on adiabatic passage, and are not therefore critically dependent on laser pulse areas, are very much more robust against interaction with the external degrees of freedom of atoms in the quantum gate.Comment: 10 pages, 5 figures, REVTeX, to be published in Walls Symposium Special Issue of Journal of Optics
    • …
    corecore