26 research outputs found

    "Galileo Galilei" (GG) a small satellite to test the equivalence principle of Galileo, Newton and Einstein

    Get PDF
    "Galileo Galilei" (GG) is a small satellite designed to fly in low Earth orbit with the goal of testing the Equivalence Principle-which is at the basis of the General Theory of Relativity-to 1 part in 1017. If successful, it would improve current laboratory results by 4 orders of magnitude. A confirmation would strongly constrain theories; proof of violation is believed to lead to a scientific revolution. The experiment design allows it to be carried out at ambient temperature inside a small 1-axis stabilized satellite (250 kg total mass). GG is under investigation at Phase A-2 level by ASI (Agenzia Spaziale Italiana) at Thales Alenia Space in Torino, while a laboratory prototype (known as GGG) is operational at INFN laboratories in Pisa, supported by INFN (Istituto Nazionale di fisica Nucleare) and ASI. A final study report will be published in 2009

    Transcriptome Analysis of the Desert Locust Central Nervous System: Production and Annotation of a Schistocerca gregaria EST Database

    Get PDF
    ) displays a fascinating type of phenotypic plasticity, designated as ‘phase polyphenism’. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology

    Calibration Technique for Attitude Manoeuvres of Spinning Satellites

    No full text

    Solar radiation induced perturbations and control of satellite trajectories

    No full text
    The long-term orbital perturbations due to solar radiation forces as well as ways to utilize these effects for corrections in the orbit are investigated. In order to obtain familiarity with relative merits of the formulations and methods relevant to the present objective, the special case of an orbit in the ecliptic plane and a force along the radiation is considered first. The long-term valid analysis is based upon the two-variable expansion method and incorporates the apparent motion of the sun by treating the sun's position as a quasi-orbital element. Analytical representations for orbital elements are derived and the perturbations are conveniently summarized in the form of polar plots showing the long-term evolution of the eccentricity vector. While the eccentricity is periodic with period close to one year, the argument of the perigee contains secular terms. The total energy and thus major axis remain conserved in the long run. However, in the course of one year, the effect of the earth's shadow may lead to small secular changes in the major axis thereby modifying the satellite's period. Next, the analysis is extended to orbits of an arbitrary inclination with closed-form analytical solutions established in some special cases. An interesting relation between the long-term behavior of the orbital inclination and the in-plane perturbations is discovered. Also, more general satellite configurations are studied: e.g., spacecrafts modelled as a plate in an arbitrary fixed orientation with respect to the earth or solar radiation as well as platforms kept fixed to the inertia! space. In all applications a realistic solar radiation force allowing for diffuse and/or specular reflection as well as for re-emission of absorbed radiation is considered. In a few cases, the analysis is extended to include arbitrarily shaped satellite bodies modelled by a number of surface components of homogeneous material characteristics. After establishing a comprehensive spectrum of the qualitative and quantitative aspects of solar radiation induced orbital perturbations, the attention is focused on the development of control strategies involving the rotation of solar panels attached to the satellite to manipulate both the direction and magnitude of the resulting force. A few on-off switching strategies are explored and the most effective switching locations for several specific objectives, e.g. maximization of the major axis, are determined. The switching strategies explored here constitute an attractive possibility for orbital corrections. The concept is particularly of interest to modern communications satellite technology since it allows their normal operation to remain unaffected over approximately half the time. Although on-off switching may lead to substantial changes in the major axis, it is not necessarily the best policy when time-varying orientations are also taken into consideration. The optimal control strategy for maximization of the major axis over one revolution is determined by means of the numerical steepest-ascent iteration procedure, and its effectiveness is compared with that of the switching programs. The solution should prove to be of interest in several future missions including the launching of a solar sail from a geocentric orbit into a heliocentric or escape trajectory. Subsequently, solar radiation effects upon a satellite (usually a solar sail) in a heliocentric orbit are explored. First, the sail is taken in a fixed but arbitrary orientation to the local frame. Using specific initial conditions, exact solutions in the form of conic sections and three-dimensional logarithmic spirals are established. For an arbitrary initial orbit, long-term approximate representations of the orbital elements are derived. An effective out-of-plane spiral transfer trajectory is obtained by reversing the force component normal to the orbit at specified positions. By choosing the appropriate control angles, any point in space can eventually be reached. Finally, time-varying optimal control strategies are explored for increasing the total energy (and angular momentum) during one revolution. While analytical approximate results can be established for near-circular orbits, in the general case a numerical steepest-ascent technique is employed. The results are compared with those from the constant sail setting indicating that the latter is a near-optimal strategy for low eccentricity starting orbits.Applied Science, Faculty ofMechanical Engineering, Department ofGraduat

    KALMAN FILTER FOR SPIN-AXIS ATTITUDE ESTIMATION

    No full text

    Effect of Thermal Radiation Pressure on Interplanetary Spacecraft

    No full text

    Attitude determination covariance analysis for geostationary transfer orbits

    No full text

    TRAJECTORY ESTIMATION OF THE HAYABUSA SAMPLE RETURN CAPSULE USING OPTICAL SENSORS

    No full text
    corecore