134 research outputs found

    Chemotrophic Microbial Mats and Their Potential for Preservation in the Rock Record

    Get PDF
    Putative microbialites are commonly regarded to have formed in association with photosynthetic microorganisms, such as cyanobacteria. However, many modern microbial mat ecosystems are dominated by chemotrophic bacteria and archaea. Like phototrophs, filamentous sulfur-oxidizing bacteria form large mats at the sediment/water interface that can act to stabilize sediments, and their metabolic activities may mediate the formation of marine phosphorites. Similarly, bacteria and archaea associated with the anaerobic oxidation of methane (AOM) catalyze the precipitation of seafloor authigenic carbonates. When preserved, lipid biomarkers, isotopic signatures, body fossils, and lithological indicators of the local depositional environment may be used to identify chemotrophic mats in the rock record. The recognition of chemotrophic communities in the rock record has the potential to transform our understanding of ancient microbial ecologies, evolution, and geochemical conditions. Chemotrophic microbes on Earth occupy naturally occurring interfaces between oxidized and reduced chemical species and thus may provide a new set of search criteria to target life-detection efforts on other planets

    How Clonal Is Clonal? Genome Plasticity across Multicellular Segments of a “Candidatus Marithrix sp.” Filament from Sulfidic, Briny Seafloor Sediments in the Gulf of Mexico

    Get PDF
    "Candidatus Marithrix" is a recently described lineage within the group of large sulfur bacteria (Beggiatoaceae, Gammaproteobacteria). This group of bacteria comprises vacuolated, attached-living filaments that inhabit the sediment surface around vent and seep sites in the marine environment. A single filament is ca. 100 µm in diameter, several millimeters long, and consists of hundreds of clonal cells, which are considered highly polyploid. Based on these characteristics, "Candidatus Marithrix" was used as a model organism for the assessment of genomic plasticity along segments of a single filament using next generation sequencing to possibly identify hotspots of microevolution. Using six consecutive segments of a single filament sampled from a mud volcano in the Gulf of Mexico, we recovered ca. 90% of the "Candidatus Marithrix" genome in each segment. There was a high level of genome conservation along the filament with average nucleotide identities between 99.98-100%. Different approaches to assemble all reads into a complete consensus genome could not fill the gaps. Each of the six segment datasets encoded merely a few hundred unique nucleotides and 5 or less unique genes - the residual content was redundant in all datasets. Besides the overall high genomic identity, we identified a similar number of single nucleotide polymorphisms (SNPs) between the clonal segments, which are comparable to numbers reported for other clonal organisms. An increase of SNPs with greater distance of filament segments was not observed. The polyploidy of the cells was apparent when analyzing the heterogeneity of reads within a segment. Here, a strong increase in single nucleotide variants, or 'intrasegmental sequence heterogeneity' (ISH) events, was observed. These sites may represent hotspots for genome plasticity, and possibly microevolution, since two thirds of these variants were not co-localized across the genome copies of the multicellular filament

    Starvation-dependent inhibition of the hydrocarbon degrader marinobacter sp. TT1 by a chemical dispersant

    Get PDF
    During marine oil spills, chemical dispersants are used routinely to disperse surface slicks, transferring the hydrocarbon constituents of oil into the aqueous phase. Nonetheless, a comprehensive understanding of how dispersants affect natural populations of hydrocarbon-degrading bacteria, particularly under environmentally relevant conditions, is lacking. We investigated the impacts of the dispersant Corexit EC9500A on the marine hydrocarbon degrader Marinobacter sp. TT1 when pre-adapted to either low n-hexadecane concentrations (starved culture) or high n-hexadecane concentrations (well-fed culture). The growth of previously starved cells was inhibited when exposed to the dispersant, as evidenced by 55% lower cell numbers and 30% lower n-hexadecane biodegradation efficiency compared to cells grown on n-hexadecane alone. Cultures that were well-fed did not exhibit dispersant-induced inhibition of growth or n-hexadecane degradation. In addition, fluorescence microscopy revealed amorphous cell aggregate structures when the starved culture was exposed to dispersants, suggesting that Corexit affected the biofilm formation behavior of starved cells. Our findings indicate that (previous) substrate limitation, resembling oligotrophic open ocean conditions, can impact the response and hydrocarbon-degrading activities of oil-degrading organisms when exposed to Corexit, and highlight the need for further work to better understand the implications of environmental stressors on oil biodegradation and microbial community dynamics

    Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the seawater–brine interface

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 3175-3183, doi:10.5194/bg-10-3175-2013.Orca Basin, an intraslope basin on the Texas-Louisiana continental slope, hosts a hypersaline, anoxic brine in its lowermost 200 m in which limited microbial activity has been reported. This brine contains a large reservoir of reduced and aged carbon, and appears to be stable at decadal time scales: concentrations and isotopic composition of dissolved inorganic (DIC) and organic carbon (DOC) are similar to measurements made in the 1970s. Both DIC and DOC are more "aged" within the brine pool than in overlying water, and the isotopic contrast between brine carbon and seawater carbon is much greater for DIC than DOC. While the stable carbon isotopic composition of brine DIC points towards a combination of methane and organic carbon remineralization as its source, radiocarbon and box model results point to the brine interface as the major source region for DIC, allowing for only limited oxidation of methane diffusing upwards from sediments. This conclusion is consistent with previous studies that identify the seawater–brine interface as the focus of microbial activity associated with Orca Basin brine. Isotopic similarities between DIC and DOC suggest a different relationship between these two carbon reservoirs than is typically observed in deep ocean basins. Radiocarbon values implicate the seawater–brine interface region as the likely source region for DOC to the brine as well as DIC.This work was funded by the WHOI Postdoctoral Scholar program, NSF Cooperative Agreement for the Operation of a National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE-0753487), and the US National Science Foundation’s Emerging Frontiers program (award 0801741 to SBJ)

    Anaerobic Oxidation of Short-Chain Alkanes in Hydrothermal Sediments: Potential Influences on Sulfur Cycling and Microbial Diversity

    Get PDF
    Short-chain alkanes play a substantial role in carbon and sulfur cycling at hydrocarbon-rich environments globally, yet few studies have examined the metabolism of ethane (C2)(C_2), propane (C3)(C_3), and butane (C4)(C_4) in anoxic sediments in contrast to methane (C1)(C_1). In hydrothermal vent systems, short-chain alkanes are formed over relatively short geological time scales via thermogenic processes and often exist at high concentrations. The sediment-covered hydrothermal vent systems at Middle Valley (MV, Juan de Fuca Ridge) are an ideal site for investigating the anaerobic oxidation of C1C4C_1–C_4 alkanes, given the elevated temperatures and dissolved hydrocarbon species characteristic of these metalliferous sediments. We examined whether MV microbial communities oxidized C1C4C_1–C_4 alkanes under mesophilic to thermophilic sulfate-reducing conditions. Here we present data from discrete temperature (25, 55, and 75C75^{\circ}C) anaerobic batch reactor incubations of MV sediments supplemented with individual alkanes. Co-registered alkane consumption and sulfate reduction (SR) measurements provide clear evidence for C1C4C_1–C_4 alkane oxidation linked to SR over time and across temperatures. In these anaerobic batch reactor sediments, 16S ribosomal RNA pyrosequencing revealed that Deltaproteobacteria, particularly a novel sulfate-reducing lineage, were the likely phylotypes mediating the oxidation of C2C4C_2–C_4 alkanes. Maximum C1C4C_1–C_4 alkane oxidation rates occurred at 55C55^{\circ}C, which reflects the mid-core sediment temperature profile and corroborates previous studies of rate maxima for the anaerobic oxidation of methane (AOM). Of the alkanes investigated, C3C_3 was oxidized at the highest rate over time, then C4C_4, C2C_2, and C1C_1, respectively. The implications of these results are discussed with respect to the potential competition between the anaerobic oxidation of C2C4C_2–C_4 alkanes with AOM for available oxidants and the influence on the fate of C1C_1 derived from these hydrothermal systems.Molecular and Cellular BiologyOrganismic and Evolutionary Biolog

    Vertical Marine Snow Distribution in the Stratified Hypersaline, and Anoxic Orca Basin (Gulf of Mexico)

    Get PDF
    We present a complete description of the depth distribution of marine snow in Orca Basin (Gulf of Mexico), from sea surface through the pycnocline to within 10 m of the seafloor. Orca Basin is an intriguing location for studying marine snow because of its unique geological and hydrographic setting: the deepest ~200 m of the basin are filled with anoxic hypersaline brine. A typical deep ocean profile of marine snow distribution was observed from the sea surface to the pycnocline, namely a surface maximum in total particle number and midwater minimum. However, instead of a nepheloid (particle-rich) layer positioned near the seabed, the nepheloid layer in the Orca Basin was positioned atop the brine. Within the brine, the total particle volume increased by a factor of 2–3 while the total particle number decreased, indicating accumulation and aggregation of material in the brine. From these observations we infer increased residence time and retention of material within the brine, which agrees well with laboratory results showing a 2.2–3.5-fold reduction in settling speed of laboratory-generated marine snow below the seawater-brine interface. Similarly, dissolved organic carbon concentration in the brine correlated positively with measured colored dissolved organic matter (r2 = 0.92, n = 15), with both variables following total particle volume inversely through the pycnocline. These data indicate the release of dissolved organic carbon concomitant with loss in total particle volume and increase in particle numbers at the brine-seawater interface, highlighting the importance of the Orca Basin as a carbon sink

    Inter- and intra-annual bacterioplankton community patterns in a deepwater sub-Arctic region:Persistent high background abundance of putative oil degraders

    Get PDF
    Oil spills at sea are one of the most disastrous anthropogenic pollution events, with the Deepwater Horizon spill providing a testament to how profoundly the health of marine ecosystems and the livelihood of its coastal inhabitants can be severely impacted by spilled oil. The fate of oil in the environment is largely dictated by the presence and activities of natural communities of oil-degrading bacteria

    Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout

    Get PDF
    A major fraction of the petroleum hydrocarbons discharged during the 2010 Macondo oil spill became associated with and sank to the seafloor as marine snow flocs. This sedimentation pulse induced the development of distinct bacterial communities. Between May 2010 and July 2011, full-length 16S rRNA gene clone libraries demonstrated bacterial community succession in oil-polluted sediment samples near the wellhead area. Libraries from early May 2010, before the sedimentation event, served as the baseline control. Freshly deposited oil-derived marine snow was collected on the surface of sediment cores in September 2010, and was characterized by abundantly detected members of the marine Roseobacter cluster within the Alphaproteobacteria. Samples collected in mid-October 2010 closest to the wellhead contained members of the sulfate-reducing, anaerobic bacterial families Desulfobacteraceae and Desulfobulbaceae within the Deltaproteobacteria, suggesting that the oil-derived sedimentation pulse triggered bacterial oxygen consumption and created patchy anaerobic microniches that favored sulfate-reducing bacteria. Phylotypes of the polycyclic aromatic hydrocarbon-degrading genus Cycloclasticus, previously found both in surface oil slicks and the deep hydrocarbon plume, were also found in oil-derived marine snow flocs sedimenting on the seafloor in September 2010, and in surficial sediments collected in October and November 2010, but not in any of the control samples. Due to the relative recalcitrance and stability of polycyclic aromatic compounds, Cycloclasticus represents the most persistent microbial marker of seafloor hydrocarbon deposition that we could identify in this dataset. The bacterial imprint of the DWH oil spill had diminished in late November 2010, when the bacterial communities in oil-impacted sediment samples collected near the Macondo wellhead began to resemble their pre-spill counterparts and spatial controls. Samples collected in summer of 2011 did not show a consistent bacterial community signature, suggesting that the bacterial community was no longer shaped by the DWH fallout of oil-derived marine snow, but instead by location-specific and seasonal factors

    Distributions of putative aerobic methanotrophs in diverse pelagic marine environments

    Get PDF
    Aerobic methane oxidization in the pelagic ocean serves an important role in limiting methane release to the atmosphere, yet little is known about the identity and distribution of bacteria that mediate this process. The distribution of putative methane-oxidizing marine groups, OPU1, OPU3 and Group X, was assessed in different ocean provinces using a newly developed fingerprinting method (monooxygenase intergenic spacer analysis (MISA)) in combination with pmoA clone library analysis and quantitative PCR (qPCR). The distribution of these three distinct monooxygenase groups, previously reported from pelagic marine environments, was examined in 39 samples including active methane seeps in the Gulf of Mexico and Santa Monica Bay, submarine canyon heads along the California continental margin, an oligotrophic subtropical gyre and areas proximal to a hydrothermal vent in the North Fiji back-arc basin. OPU1 and OPU3 were widely and similarly distributed within the meso-and bathypelagic zone (110 to similar to 2000 m water depth) and showed a >50-fold greater abundance near methane seeps relative to non-seep sites. In contrast, Group X was predominantly recovered from samples along the California margin, at both seep and non-seep sites. All three phylotypes were below detection in the epipelagic zone to depths of 100 m. Several additional deeply branching monooxygenase sequences were also identified in this study, indicating the presence of uncharacterized groups of microorganisms potentially involved in the cycling of methane or ammonium

    Extensive carbon isotopic heterogeneity among methane seep microbiota

    Get PDF
    To assess and study the heterogeneity of δ^(13)C values for seep microorganisms of the Eel River Basin, we studied two principally different sample sets: sediments from push cores and artificial surfaces colonized over a 14 month in situ incubation. In a single sediment core, the δ^(13)C compositions of methane seep-associated microorganisms were measured and the relative activity of several metabolisms was determined using radiotracers. We observed a large range of archaeal δ^(13)C values (> 50‰) in this microbial community. The δ^(13)C of ANME-1 rods ranged from −24‰ to −87‰. The δ^(13)C of ANME-2 sarcina ranged from −18‰ to −75‰. Initial measurements of shell aggregates were as heavy as −19.5‰ with none observed to be lighter than −57‰. Subsequent measurements on shell aggregates trended lighter reaching values as ^(13)C-depleted as −73‰. The observed isotopic trends found for mixed aggregates were similar to those found for shell aggregates in that the initial measurements were often enriched and the subsequent analyses were more ^(13)C-depleted (with values as light as −56‰). The isotopic heterogeneity and trends observed within taxonomic groups suggest that ANME-1 and ANME-2 sarcina are capable of both methanogenesis and methanotrophy. In situ microbial growth was investigated by incubating a series of slides and silicon (Si) wafers for 14 months in seep sediment. The experiment showed ubiquitous growth of bacterial filaments (mean δ^(13)C = −38 ± 3‰), suggesting that this bacterial morphotype was capable of rapid colonization and growth
    corecore