2,253 research outputs found

    Dual targeting of the tRNA nucleotidyltransferase in plants: not just the signal

    Get PDF
    Enzymes involved in tRNA maturation are essential for cytosolic, mitochondrial, and plastid protein synthesis and are therefore localized to these different compartments of the cell. Interestingly, only one isoform of tRNA nucleotidyltransferase (responsible for adding the 3′-terminal cytidine–cytidine–adenosine to tRNAs) has been identified in plants. The present study therefore explored how signals contained on this enzyme allow it to be distributed among the different cell compartments. It is demonstrated that the N-terminal portion of the protein acts as an organellar targeting signal and that differential use of multiple in-frame start codons alters the localization of the protein. Moreover, it is shown that the mature domain has a major impact on the distribution of the protein within the cell. These data indicate that regulation of dual localization involves not only specific N-terminal signals, but also additional factors within the protein or the cell

    The Dependency of the Cepheid Period-Luminosity Relation on Chemical Composition

    Full text link
    The dependency of the Cepheid Period-Luminosity Relation on chemical composition at different wavelengths is assessed via direct detailed abundance analysis of Galactic and Magellanic Cepheids, as derived from high resolution, high signal-to-noise spectra. Our measurements span one order of magnitude in iron content and allow to rule out at the ~ 9 sigma level the universality of the Period-Luminosity Relation in the V band, with metal rich stars being fainter than metal poor ones by ~0.3 mag. The dependency is less pronounced in the K band. Its magnitude and statistical significance decisively depend on detailed distance measurements to individual stars, as inferred via the Infrared Surface Brightness Method.Comment: 3 pages, 2 figures, to be published in "Stellar Pulsation: Challenges for Theory and Observation" (31 May - 5 June, Santa Fe, New Mexico). Minor typos fixed in v

    Kinetics of the long-range spherical model

    Full text link
    The kinetic spherical model with long-range interactions is studied after a quench to T<TcT < T_c or to T=TcT = T_c. For the two-time response and correlation functions of the order-parameter as well as for composite fields such as the energy density, the ageing exponents and the corresponding scaling functions are derived. The results are compared to the predictions which follow from local scale-invariance.Comment: added "fluctuation-dissipation ratios"; fixed typo

    Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    Get PDF
    An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the transitions linking the two SD bands have been firmly established. Comparisons with RPA calculations indicate that the excited SD band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm

    Deformations of calibrated D-branes in flux generalized complex manifolds

    Get PDF
    We study massless deformations of generalized calibrated cycles, which describe, in the language of generalized complex geometry, supersymmetric D-branes in N=1 supersymmetric compactifications with fluxes. We find that the deformations are classified by the first cohomology group of a Lie algebroid canonically associated to the generalized calibrated cycle, seen as a generalized complex submanifold with respect to the integrable generalized complex structure of the bulk. We provide examples in the SU(3) structure case and in a `genuine' generalized complex structure case. We discuss cases of lifting of massless modes due to world-volume fluxes, background fluxes and a generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix B, made minor changes according to instructions referee JHE

    Infrared Spectroscopy of Symbiotic Stars. IV. V2116 Ophiuchi/GX 1+4, The Neutron Star Symbiotic

    Get PDF
    We have computed, based on 17 infrared radial velocities, the first set of orbital elements for the M giant in the symbiotic binary V2116 Ophiuchi. The giant's companion is a neutron star, the bright X-ray source GX 1+4. We find an orbital period of 1161 days by far the longest of any known X-ray binary. The orbit has a modest eccentricity of 0.10 with an orbital circularization time of less than 10^6 years. The large mass function of the orbit significantly restricts the mass of the M giant. Adopting a neutron-star mass of 1.35M(Sun), the maximum mass of the M giant is 1.22M(Sun), making it the less massive star. Derived abundances indicate a slightly subsolar metallicity. Carbon and nitrogen are in the expected ratio resulting from the red-giant first dredge-up phase. The lack of O-17 suggests that the M-giant has a mass less than 1.3M(Sun), consistent with our maximum mass. The red giant radius is 103R(Sun), much smaller than the estimated Roche lobe radius. Thus, the mass loss of the red giant is via a stellar wind. Although the M giant companion to the neutron star has a mass similar to the late-type star in low-mass X-ray binaries, its near-solar abundances and apparent runaway velocity are not fully consistent with the properties of this class of stars.Comment: In press to The Astrophysical Journal (10 April 2006 issue). 23 page

    Multi-Omics Analysis Reveals MicroRNAs Associated With Cardiometabolic Traits

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression. Extensive research has explored the role of miRNAs in the risk for type 2 diabetes (T2D) and

    Singular manifolds, topology change and the dynamics of compactification

    Get PDF
    We investigate the dynamics of the geometric transitions associated to compactified spacetimes. By including the dynamics of gravity we are able to follow the evolution of collapsing cycles as they attempt to undergo a topology changing transition. Rather than achieving this singular geometry we find that one of two scenarios occur, depending on the initial conditions. Either a horizon forms, shielding a curvature singularity, or the cycle re-expands after an initial contraction phase. For the case where a horizon forms we identify the final state with a known analytic black-hole solution. We also show use our results to demonstate a novel compactification mechanism, owing to the asymptotic structure of this black-hole solution

    A Cysteine Zipper Stabilizes a Pre-Fusion F Glycoprotein Vaccine for Respiratory Syncytial Virus

    Get PDF
    Recombinant subunit vaccines should contain minimal non-pathogen motifs to reduce potential off-target reactivity. We recently developed a vaccine antigen against respiratory syncytial virus (RSV), which comprised the fusion (F) glycoprotein stabilized in its pre-fusion trimeric conformation by “DS-Cav1” mutations and by an appended C-terminal trimerization motif or “foldon” from T4-bacteriophage fibritin. Here we investigate the creation of a cyste- ine zipper to allow for the removal of the phage foldon, while maintaining the immunogenic- ity of the parent DS-Cav1+foldon antigen. Constructs without foldon yielded RSV F monomers, and enzymatic removal of the phage foldon from pre-fusion F trimers resulted in their dissociation into monomers. Because the native C terminus of the pre-fusion RSV F ectodomain encompasses a viral trimeric coiled-coil, we explored whether introduction of cysteine residues capable of forming inter-protomer disulfides might allow for stable trimers. Structural modeling indicated the introduced cysteines to form disulfide “rings”, with each ring comprising a different set of inward facing residues of the coiled-coil. Three sets of rings could be placed within the native RSV F coiled-coil, and additional rings could be added by duplicating portions of the coiled-coil. High levels of neutralizing activity in mice, equivalent to that of the parent DS-Cav1+foldon antigen, were elicited by a 4-ring stabilized RSV F trimer with no foldon. Structure-based alteration of a viral coiled-coil to create a cys- teine zipper thus allows a phage trimerization motif to be removed from a candidate vaccine antigen
    • …
    corecore