14 research outputs found

    Unravelling the Role of Nitrogen in Surface Chemistry and Oxidation Evolution of Deep Cryogenic Treated High-Alloyed Ferrous Alloy

    Get PDF
    The role of nitrogen, introduced by deep cryogenic treatment (DCT), has been investigated and unraveled in relation to induced surface chemistry changes and improved corrosion resistance of high-alloyed ferrous alloy AISI M35. The assumptions and observations of the role of nitrogen were investigated and confirmed by using a multitude of complementary investigation techniques with a strong emphasis on ToF-SIMS. DCT samples display modified thickness, composition and layering structure of the corrosion products and passive film compared to a conventionally heat-treated sample under the same environmental conditions. The changes in the passive film composition of a DCT sample is correlated to the presence of the so-called ghost layer, which has higher concentration of nitrogen. This layer acts as a precursor for the formation of green rust on which magnetite is formed. This specific layer combination acts as an effective protective barrier against material degradation. The dynamics of oxide layer build-up is also changed by DCT, which is elucidated by the detection of different metallic ions and their modified distribution over surface thickness compared to its CHT counterpart. Newly observed passive film induced by DCT successfully overcomes the testing conditions in more extreme environments such as high temperature and vibrations, which additionally confirms the improved corrosion resistance of DCT treated high-alloyed ferrous alloys

    Mechanical, Corrosive, and Tribological Degradation of Metal Coatings and Modified Metallic Surfaces

    Get PDF
    Mechanical, corrosive, and tribological degradation of metal and metal coatings is just one of the challenges faced by numerous industries [...

    Influence of the Deep Cryogenic Treatment on AISI 52100 and AISI D3 Steel’s Corrosion Resistance

    Get PDF
    The effect of deep cryogenic treatment (DCT) on corrosion resistance of steels AISI 52100 and AISI D3 is investigated and compared with conventional heat-treated counterparts. DCT’s influence on microstructural changes is subsequently correlated to the corrosion resistance. DCT is confirmed to reduce the formation of corrosion products on steels’ surface, retard the corrosion products development and propagation. DCT reduces surface cracking, which is considered to be related to modified residual stress state of the material. DCT’s influence on each steel results from the altered microstructure and alloying element concentration that depends on steel matrix and type. This study presents DCT as an effective method for corrosion resistance alteration of steels

    Coupled role of alloying and manufacturing on deep cryogenic treatment performance on high-alloyed ferrous alloys

    Get PDF
    This study focuses on influence of alloying content and type of manufacturing on the effectiveness of deep cryogenic treatment (DCT) on properties of selected high-alloyed ferrous alloys (HAFA): EN HS6-5-2, EN HS6-5-2-5, EN HS6-5-3 and EN HS12-1-4. In order to evaluate the dependency of DCT performance on chemical composition and manufacturing type, the microstructure, hardness, impact and fracture toughness and fatigue properties were analyzed. Additionally, the fatigue data was evaluated using an adapted strain-life model in order to understand the unique effects of DCT with selected factors and provide a model for estimating the fatigue limit of DCT HAFA. The study indicates that DCT affects carbide precipitation, size and morphology of nanocarbides, average distance between carbides and nanocarbides, as well as the base matrix (martensitic laths). The induced microstructural changes cause an overall positive change of mechanical properties in selected HAFA, which correlates well with individual alloying and manufacturing differences. Overall, DCT has greater effect on wrought HAFA than powder metallurgy manufactured HAFA, at which high content of W and Co generally degenerates the DCT induced microstructure modifications

    Understanding carbide evolution and surface chemistry during deep cryogenic treatment in high-alloyed ferrous alloy

    Get PDF
    The study investigates the effect of deep cryogenic treatment (DCT) on a high-alloyed ferrous alloy (HAFA) and its effectiveness on carbide evolution and chemical shifts of alloying elements. With ex-situ and in-situ observations ranging from the microscopic to the nanoscopic level, we uncover the atomistic mechanism by which DCT affects carbide precipitation, resulting in a 50% increase in carbide volume fraction. Synchrotron-based scanning photoelectron microscopy provides insight into the agglomeration of carbon during exposure to DCT. We find that Mo plays a crucial role in DCT through its modification of chemical bonding states, which is postulated to originate from the loosely-formed primordial Mo2C carbides formed during exposure to cryogenic temperatures. These in turn provide energetically favorable nucleation zones that accelerate the formation of M7C3 carbides, which serve as intermediate states for the formation of M23C6 carbides, which most strongly impact the mechanical properties. These results are supported by atom probe tomography, showing the preferential formation of Mo-rich M7C3 carbides in DCT samples, resulting from greater solute mobility. This work clarifies the fundamental mechanisms on how DCT affects HAFA, solving a long-elusive problem

    Assessment of deep cryogenic heat-treatment impact on the microstructure and surface chemistry of austenitic stainless steel

    Get PDF
    This systematic study deals with the influence of deep cryogenic treatment (DCT) on microstructure and surface properties of austenitic stainless steel AISI 304 L on different length scales and in the surface region. The study incorporates different analysis techniques, such as light microscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), electron backscatter diffraction (EBSD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ions mass spectrometry (ToF-SIMS). DCT modifies the microstructure of treated samples through promoted precipitation of Cr7C3 carbides, induced twinning and α-martensite formation. Additionally, XPS/AR-XPS and ToF-SIMS results also provide evidence of modified oxidation dynamics of DCT samples compared to conventionally heat-treated samples with increase of the Fe-oxide fraction and lower Cr-oxide fraction in the surface oxide layer. An evaluation of oxidation states and ions distribution within the surface layer of deep cryogenically heat-treated stainless steel AISI 304 L is conducted with XPS/ToF-SIMS. These results are correlated with the microstructural changes and nitrogen diffusivity induced by DCT, which are associated with modified oxidation behaviour of AISI 304 L. These results provide further understanding of DCT dynamic on the overall microstructure and the corresponding surface behaviour

    Deep Cryogenic Treatment of Metals

    No full text
    Heat treatment of different materials has been constantly altered throughout centuries from blacksmith’s art to high tech science technology nowadays. With the evolution of techniques and improvement of chemical composition of metals, an increasing interest evoked in development of heat treatment techniques and with it influence on the properties of selected material. Heat-treating processes can involve the heating or cooling of selected material by cryogenic treatment
    corecore