19 research outputs found

    Acute kidney injury is associated with subsequent infection in neonates after the Norwood procedure: a retrospective chart review

    Get PDF
    Background: Acute kidney injury (AKI) and infection are common complications after pediatric cardiac surgery. No pediatric study has evaluated for an association between postoperative AKI and infection. The objective of this study was to determine if AKI in neonates after cardiopulmonary bypass was associated with the development of a postoperative infection. Methods: We performed a single center retrospective chart review from January 2009 to December 2015 of neonates (age ≀ 30 days) undergoing the Norwood procedure. AKI was defined by the modified neonatal Kidney Disease Improving Global outcomes serum creatinine criteria using (1) measured serum creatinine and (2) creatinine corrected for fluid balance on postoperative days 1-4. Infection, (culture positive or presumed), must have occurred after a diagnosis of AKI and within 60 days of surgery. Results: Ninety-five patients were included, of which postoperative infection occurred in 42 (44%). AKI occurred in 38 (40%) and 42 (44%) patients by measured serum creatinine and fluid overload corrected creatinine, respectively, and was most commonly diagnosed on postoperative day 2. The median time to infection from the time of surgery and AKI was 7 days (IQR 5-14 days) and 6 days (IQR 3-13 days), respectively. After adjusting for confounders, the odds of a postoperative infection were 3.64 times greater in patients with fluid corrected AKI (95% CI, 1.36-9.75; p = 0.01). Conclusions: Fluid corrected AKI was independently associated with the development of a postoperative infection. These findings support the notion that AKI is an immunosuppressed state that increases the risk of infection

    Curcumin therapy to treat vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease: Design and baseline characteristics of participants

    Get PDF
    Although often considered to be a disease of adults, complications of autosomal dominant polycystic kidney disease (ADPKD) begin in childhood. While the hallmark of ADPKD is the development and continued growth of multiple renal cysts that ultimately result in loss of kidney function, cardiovascular complications are the leading cause of death among affected patients. Vascular dysfunction (endothelial dysfunction and large elastic artery stiffness) is evident very early in the course of the disease and appears to involve increased oxidative stress and inflammation. Treatment options to prevent cardiovascular disease in adults with ADPKD are limited, thus childhood may represent a key therapeutic window. Curcumin is a safe, naturally occurring polyphenol found in the Indian spice turmeric. This spice has a unique ability to activate transcription of key antioxidants, suppress inflammation, and reduce proliferation. Here we describe our ongoing randomized, placebo-controlled, double-blind clinical trial to assess the effect of curcumin therapy on vascular function and kidney growth in 68 children and young adults age 6–25 years with ADPKD. Baseline demographic, vascular, and kidney volume data are provided. This study has the potential to establish a novel, safe, and facile therapy for the treatment of arterial dysfunction, and possibly renal cystic disease, in an understudied population of children and young adults with ADPKD

    Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice

    Get PDF
    Acute kidney injury (AKI) is a systemic disease associated with widespread effects on distant organs, including the heart. Normal cardiac function is dependent on constant ATP generation, and the preferred method of energy production is via oxidative phosphorylation. Following direct ischemic cardiac injury, the cardiac metabolome is characterized by inadequate oxidative phosphorylation, increased oxidative stress, and increased alternate energy utilization. We assessed the impact of ischemic AKI on the metabolomics profile in the heart. Ischemic AKI was induced by 22 minutes of renal pedicle clamping, and 124 metabolites were measured in the heart at 4 hours, 24 hours, and 7 days post-procedure. 41% of measured metabolites were affected, with the most prominent changes observed 24 hours post-AKI. The post-AKI cardiac metabolome was characterized by amino acid depletion, increased oxidative stress, and evidence of alternative energy production, including a shift to anaerobic forms of energy production. These metabolomic effects were associated with significant cardiac ATP depletion and with echocardiographic evidence of diastolic dysfunction. In the kidney, metabolomics analysis revealed shifts suggestive of energy depletion and oxidative stress, which were reflected systemically in the plasma. This is the first study to examine the cardiac metabolome after AKI, and demonstrates that effects of ischemic AKI on the heart are akin to the effects of direct ischemic cardiac injury

    FGF23, Frailty, and Falls in SPRINT

    No full text

    Calcific Uremic Arteriolopathy Revisited

    No full text

    Sex hormones and the risk of cardiovascular disease and mortality in male and female patients with chronic kidney disease: A systematic review and meta‐analysis

    No full text
    Abstract Patients with chronic kidney disease (CKD) commonly experience sex hormone disturbances, which may be associated with the risk of cardiovascular disease (CVD) and mortality. This review aimed to systematically evaluate current findings on the association of sex hormone levels with the risk of CVD events and mortality (CVD and all‐cause) in the CKD population. Articles were systematically searched in CINAHL, Cochrane, and PubMed. A total of 1739 articles were independently screened by two reviewers and 17 prospective cohort studies were included. The clinical conditions of the patients were those with non‐dialysis CKD [mean/median estimated glomerular filtration rate (eGFR) between 15–51 ml/min/1.73 m2] and those on chronic dialysis (mean/median vintage between 6–125 months). The sample size ranged from 111 to 2419 and the mean/median age of subjects ranged from 52 to 72 years. The sex hormones studied were testosterone, estradiol, prolactin, dehydroepiandrosterone sulfate, and relaxin. A random‐effects model was used to generate a pooled hazard ratio (HR) to evaluate the association of total testosterone levels with the risk of CVD and all‐cause mortality. Most studies examined total testosterone levels (11 out of 17 studies) and studied only male patients (12 out of 17 studies). A lower total testosterone level was associated with a higher risk of CVD mortality [HR 4.37 (95% CI 1.40–13.65)] and all‐cause mortality [1.96 (1.35–2.83)] in males with CKD. To conclude, there is a strong need for additional studies examining the association of sex hormones with cardiovascular and mortality risk in female patients with CKD

    Dietary Sodium/Potassium Intake Does Not Affect Cognitive Function or Brain Imaging Indices

    No full text
    BackgroundDietary sodium may influence cognitive function through its effects on cerebrovascular function and cerebral blood flow.MethodsThe aim of this study was to evaluate the association of dietary sodium intake with cognitive decline in community-dwelling older adults. We also evaluated the associations of dietary potassium and sodium:potassium intake with cognitive decline, and associations of these nutrients with micro- and macro-structural brain magnetic resonance imaging (MRI) indices. In all, 1,194 participants in the Health Aging and Body Composition study with measurements of dietary sodium intake (food frequency questionnaire [FFQ]) and change in the modified Mini Mental State Exam (3MS) were included.ResultsThe age of participants was 74 ± 3 years with a mean dietary sodium intake of 2,677 ± 1,060 mg/day. During follow-up (6.9 Â± 0.1 years), 340 (28%) had a clinically significant decline in 3MS score (≄1.5 SD of mean decline). After adjustment, dietary sodium intake was not associated with odds of cognitive decline (OR 0.96, 95% CI 0.50-1.84 per doubling of sodium). Similarly, potassium was not associated with cognitive decline; however, higher sodium:potassium intake was associated with increased odds of cognitive decline (OR 2.02 [95% CI 1.01-4.03] per unit increase). Neither sodium or potassium alone nor sodium:potassium were associated with micro- or macro-structural brain MRI indices. These results are limited by the use of FFQ.ConclusionsIn community-dwelling older adults, higher sodium:potassium, but not sodium or potassium intake alone, was associated with decline in cognitive function, with no associations observed with micro- and macro-structural brain MRI indices. These findings do not support reduction dietary sodium/increased potassium intake to prevent cognitive decline with aging
    corecore