21 research outputs found
Structural and functional characterization of HMGB1 protein in rat liver during experimentally-induced diabetes type 1
ΠΠΊΡΠΈΠ΄Π°ΡΠΈΠ²Π½ΠΈ ΡΡΡΠ΅Ρ ΠΈ Ρ
ΡΠΎΠ½ΠΈΡΠ½Π° ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΠ° ΡΠΌΠ°ΡΡΠ°ΡΡ ΡΠ΅ Π³Π»Π°Π²Π½ΠΈΠΌ ΡΠ·ΡΠΎΡΠΈΠΌΠ° ΠΏΠΎΡΠ°Π²Π΅ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°ΡΠΈΡΠ°, ΠΌΠ΅ΡΡ ΠΊΠΎΡΠΈΠΌΠ° ΡΡ ΠΈ ΠΎΡΡΠ΅ΡΠ΅ΡΠ° ΡΠ΅ΡΡΠ΅. ΠΠ°ΠΆΠ½Ρ ΡΠ»ΠΎΠ³Ρ ΠΌΠ΅Π΄ΠΈΡΠ°ΡΠΎΡΠ° ΠΎΠ²ΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΠ° ΠΌΠΎΠΆΠ΅ ΠΈΠΌΠ°ΡΠΈ Π΅Π½Π΄ΠΎΠ³Π΅Π½ΠΈ ΠΏΡΠΎΡΠ΅ΠΈΠ½ HMGB1, ΠΊΠΎΡΠΈ Ρ Π²Π°Π½ΡΠ΅Π»ΠΈΡΡΠΊΡ ΡΡΠ΅Π΄ΠΈΠ½Ρ Π΄ΠΎΡΠΏΠ΅Π²Π° ΠΈΠ· Π½Π΅ΠΊΡΠΎΡΠΈΡΠ½ΠΈΡ
, ΠΎΡΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΈ Π°ΠΊΡΠΈΠ²ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅Π»ΠΈΡΠ°. ΠΠ°ΠΊΠΎ ΡΠ΅ Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅ΡΡ ΠΏΠΎΠ½Π°ΡΠ°ΡΠ΅ HMGB1 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° ΡΠ»Π°Π±ΠΎ ΠΈΠ·ΡΡΠ°Π²Π°Π½ΠΎ, Ρ ΠΎΠ²ΠΎΡ Π΄ΠΎΠΊΡΠΎΡΡΠΊΠΎΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠΈ ΠΈΡΠΏΠΈΡΠΈΠ²Π°Π½ ΡΠ΅ Π΄ΠΎΠΏΡΠΈΠ½ΠΎΡ HMGB1 ΠΎΡΡΠ΅ΡΠ΅ΡΠΈΠΌΠ° ΡΠ΅ΡΡΠ΅ ΠΏΠ°ΡΠΎΠ²Π° ΡΠ° ΡΡΡΠ΅ΠΏΡΠΎΠ·ΠΎΡΠΎΡΠΈΠ½ΠΎΠΌ-ΠΈΠ·Π°Π·Π²Π°Π½ΠΈΠΌ ΠΠ’1. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ΅ Π΄Π° Π½ΠΈΠ²ΠΎ ΠΎΡΡΠ΅ΡΠ΅ΡΠ° ΡΠ΅ΡΡΠ΅ ΡΠΎΠΊΠΎΠΌ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅Ρa ΠΊΠΎΡΠ΅Π»ΠΈΡΠ΅ ΡΠ° ΠΏΡΠΈΡΡΡΡΠ²ΠΎΠΌ Π²Π°Π½ΡΠ΅Π»ΠΈΡΡΠΊΠΎΠ³ HMGB1. ΠΠ²Π°Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½, Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΎΡ ΡΠ΅ΡΡΠΈ, Π±ΠΈΠ²Π° ΡΡΡΡΠΊΡΡΡΠ½ΠΎ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠΎΠ²Π°Π½ Π°ΡΠ΅ΡΠΈΠ»Π°ΡΠΈΡΠΎΠΌ, ΡΠΎΡΡΠΎΡΠΈΠ»Π°ΡΠΈΡΠΎΠΌ ΠΈ O-GlcNAc Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»Π°ΡΠΈΡΠΎΠΌ ΡΡΠΎ ΠΊΠΎΡΠ΅Π»ΠΈΡΠ΅ ΡΠ° ΡΠ΅Π³ΠΎΠ²ΠΈΠΌ ΠΈΠ·Π»Π°ΡΠΊΠΎΠΌ ΠΈΠ· ΡΠ΅Π΄ΡΠ° ΡΠ΅Π»ΠΈΡΠ° Ρ ΡΠΈΡΠΎΠΏΠ»Π°Π·ΠΌΡ ΠΈ ΠΏΠΎΠ²Π΅ΡΠ°ΡΠ΅ΠΌ ΡΠ΅Π³ΠΎΠ²ΠΎΠ³ ΠΏΡΠΈΡΡΡΡΠ²Π° Ρ ΡΠ΅ΡΡΠΈ ΠΈ ΡΠ΅ΡΡΠΌΡ. Π Π΅Π·ΡΠ»ΡΠ°ΡΠΈ Ρ Π²Π΅Π·ΠΈ ΡΠ° ΡΠ½ΠΈΠΆΠ°Π²Π°ΡeΠΌ Π½ΠΈΠ²ΠΎΠ° Π²Π°Π½ΡΠ΅Π»ΠΈΡΡΠΊΠΎΠ³ HMGB1 ΡΡΠ΅ΡΠΌΠ°Π½ΠΎΠΌ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΈΡ
ΠΏΠ°ΡΠΎΠ²Π° ΠΌΠ΅Π»Π°ΡΠΎΠ½ΠΈΠ½ΠΎΠΌ ΠΈΠ»ΠΈ Π΅ΡΠΈΠ» ΠΏΠΈΡΡΠ²Π°ΡΠΎΠΌ, ΡΠΊΠ°Π·ΡΡΡ Π΄Π° HMGB1 Π΄ΠΎΠΏΡΠΈΠ½ΠΎΡΠΈ ΠΎΡΡΠ΅ΡΠ΅ΡΡ ΡΠ΅ΡΡΠ΅ Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅ΡΡ ΠΎΠ΄ΡΠΆΠ°Π²Π°ΡΠ΅ΠΌ ΡΡΠ°ΡΠ° Ρ
ΡΠΎΠ½ΠΈΡΠ½Π΅ ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΠ΅, ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ΠΌ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°ΡΠΈΠ²Π½Π΅ ΠΎΠ΄Π±ΡΠ°Π½Π΅ ΠΈ ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ΠΌ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡΠ΅. ΠΠ°Π½ΡΠ΅Π»ΠΈΡΡΠΊΠΈ HMGB1 ΠΊΡΠΎΠ· ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ΅ ΡΠ° TLR4 ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠΌ Π°ΠΊΡΠΈΠ²ΠΈΡΠ° MAPΠ/NF-ΞΊB p65 ΠΈ ΠΠΠ1/STAT3 ΡΠΈΠ³Π½Π°Π»Π½Π΅ ΠΏΡΡΠ΅Π²Π΅, Π΄ΠΎΠΏΡΠΈΠ½ΠΎΡΠ΅ΡΠΈ ΠΏΠΎΠ²Π΅ΡΠ°ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡΠ΅ ΠΏΡΠΎΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΡΠΊΠΈΡ
ΡΠΈΡΠΎΠΊΠΈΠ½Π° TNF-Ξ± ΠΈ IL-6 ΠΈ Π°ΠΊΡΡΠ½ΠΎ-ΡΠ°Π·Π½ΠΎΠ³ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° Ρ
Π°ΠΏΡΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°. ΠΠΎΠ΄ΡΡΠΈΡΠ°ΡΠ΅ΠΌ NF-ΞΊB p65 ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΡΠΊΠΎΠ³ ΠΏΡΡΠ°, HMGB1 Π΄Π΅Π»ΡΡΠ΅ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ Π½Π° ΡΠΈΡΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈ ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΎΡ ΡΠ΅ΡΡΠΈ ΡΠ°ΠΊΠΎ ΡΡΠΎ ΠΎΠ½Π΅ΠΌΠΎΠ³ΡΡΠ°Π²Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡ Nrf2 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°, ΠΎΠ΄Π³ΠΎΠ²ΠΎΡΠ½ΠΎΠ³ Π·Π° ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΠ΅ ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡΡ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°ΡΠΈΠ²Π½ΠΈΡ
Π΅Π½Π·ΠΈΠΌΠ°. ΠΠ° ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° ΡΠ΅ΡΡΠ΅, Π°ΠΊΡΠΈΠ²ΠΈΡΠ°Π½Π° HMGB1/TLR4 ΠΎΡΠ° ΡΡΠΈΡΠ΅ ΠΏΡΠ΅ΠΊΠΎ ΡΠ²Π΅ΡΠ°ΡΠ° ΠΏΡΠΈΡΡΡΡΠ²Π° Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅Π³ΡΠ»Π°ΡΠΎΡΠ° ΡΠ΅Π»ΠΈΡΡΠΊΠΎΠ³ ΡΠΈΠΊΠ»ΡΡΠ° - ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° p53 ΠΈ p21, ΠΈ ΡΠΌΠ°ΡΠ΅ΡΠ΅ΠΌ Π½ΠΈΠ²ΠΎΠ°
ΡΠΈΠΊΠ»ΠΈΠ½Π° D1. ΠΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΠΊΠ°Π·ΡΡΡ Π½Π° ΡΠ»ΠΎΠΆΠ΅Π½ΠΎΡΡ Π΄Π΅Π»ΠΎΠ²Π°ΡΠ° HMGB1 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅ΡΡ ΠΈ Π½Π° Π·Π½Π°ΡΠ°Ρ ΡΠΏΡΠ΅ΡΠ°Π²Π°ΡΠ° ΠΎΡΠ»ΠΎΠ±Π°ΡΠ°ΡΠ° HMGB1 ΠΈΠ»ΠΈ Π±Π»ΠΎΠΊΠ°Π΄Π΅ HMGB1/TLR4 ΠΎΡΠ΅ Ρ ΡΠΈΡΡ ΠΎΠ΄Π»Π°Π³Π°ΡΠ° Π½Π°ΡΡΠ°Π½ΠΊΠ° ΠΎΡΡΠ΅ΡΠ΅ΡΠ° ΡΠ΅ΡΡΠ΅.Oxidative stress and chronic inflammation are considered to be the main causes of diabetic complications, one of which is liver damage. An important mediator of these processes may be the endogenous HMGB1 protein, when released into the extracellular environment from the necrotic, damaged or activated cells. As the HMGB1 role in diabetes was insufficiently studied, in this doctoral dissertation the contribution of HMGB1 to liver damage of streptozotocin-induced diabetic rats was investigated. It has been shown that the level of liver damage in diabetes correlates with the presence of extracellular HMGB1. In diabetic liver, this protein is structurally modified by acetylation, phosphorylation, and O-GlcNAc glycosylation, which correlates with its translocation from the nucleus to the cytoplasm and an increase in its presence in the liver and serum. Reduction of the level of extracellular HMGB1 by melatonin or ethyl pyruvate treatment of diabetic rats, shows that HMGB1 contributes to diabetic liver damage by maintaining a chronic inflammation, by lowering antioxidant defense and by reducing regeneration. Extracellular HMGB1 activates MAPK/NF-ΞΊB p65 and JAK1/STAT3 signaling pathways through interactions with the TLR4 receptor, thus contributing increased production of proinflammatory cytokines TNF-Ξ± and IL-6 and the acute-phase protein, haptoglobin. By stimulating the NF-ΞΊB p65 inflammatory pathway, HMGB1 acts negatively on the cytoprotective response of the diabetic liver, by disabling Nrf2 protein activity, which is responsible for reduction of inflammation and antioxidant enzymes production. Activated HMGB1/TLR4 axis reduces regenerative potential of the liver by increasing the presence of negative cell cycle regulators - proteins p53 and p21, and also by decreasing the level of cyclin D1. The obtained results indicate the complexity of HMGB1 protein action in diabetes and
underlines the importance of preventing the release of HMGB1 or blockage of HMGB1/TLR4 axis in order to delay the occurrence of liver damage
Structural and functional characterization of HMGB1 protein in rat liver during experimentally-induced diabetes type 1
ΠΠΊΡΠΈΠ΄Π°ΡΠΈΠ²Π½ΠΈ ΡΡΡΠ΅Ρ ΠΈ Ρ
ΡΠΎΠ½ΠΈΡΠ½Π° ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΠ° ΡΠΌΠ°ΡΡΠ°ΡΡ ΡΠ΅ Π³Π»Π°Π²Π½ΠΈΠΌ ΡΠ·ΡΠΎΡΠΈΠΌΠ° ΠΏΠΎΡΠ°Π²Π΅ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΈΡ
ΠΊΠΎΠΌΠΏΠ»ΠΈΠΊΠ°ΡΠΈΡΠ°, ΠΌΠ΅ΡΡ ΠΊΠΎΡΠΈΠΌΠ° ΡΡ ΠΈ ΠΎΡΡΠ΅ΡΠ΅ΡΠ° ΡΠ΅ΡΡΠ΅. ΠΠ°ΠΆΠ½Ρ ΡΠ»ΠΎΠ³Ρ ΠΌΠ΅Π΄ΠΈΡΠ°ΡΠΎΡΠ° ΠΎΠ²ΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΠ° ΠΌΠΎΠΆΠ΅ ΠΈΠΌΠ°ΡΠΈ Π΅Π½Π΄ΠΎΠ³Π΅Π½ΠΈ ΠΏΡΠΎΡΠ΅ΠΈΠ½ HMGB1, ΠΊΠΎΡΠΈ Ρ Π²Π°Π½ΡΠ΅Π»ΠΈΡΡΠΊΡ ΡΡΠ΅Π΄ΠΈΠ½Ρ Π΄ΠΎΡΠΏΠ΅Π²Π° ΠΈΠ· Π½Π΅ΠΊΡΠΎΡΠΈΡΠ½ΠΈΡ
, ΠΎΡΡΠ΅ΡΠ΅Π½ΠΈΡ
ΠΈ Π°ΠΊΡΠΈΠ²ΠΈΡΠ°Π½ΠΈΡ
ΡΠ΅Π»ΠΈΡΠ°. ΠΠ°ΠΊΠΎ ΡΠ΅ Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅ΡΡ ΠΏΠΎΠ½Π°ΡΠ°ΡΠ΅ HMGB1 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° ΡΠ»Π°Π±ΠΎ ΠΈΠ·ΡΡΠ°Π²Π°Π½ΠΎ, Ρ ΠΎΠ²ΠΎΡ Π΄ΠΎΠΊΡΠΎΡΡΠΊΠΎΡ Π΄ΠΈΡΠ΅ΡΡΠ°ΡΠΈΡΠΈ ΠΈΡΠΏΠΈΡΠΈΠ²Π°Π½ ΡΠ΅ Π΄ΠΎΠΏΡΠΈΠ½ΠΎΡ HMGB1 ΠΎΡΡΠ΅ΡΠ΅ΡΠΈΠΌΠ° ΡΠ΅ΡΡΠ΅ ΠΏΠ°ΡΠΎΠ²Π° ΡΠ° ΡΡΡΠ΅ΠΏΡΠΎΠ·ΠΎΡΠΎΡΠΈΠ½ΠΎΠΌ-ΠΈΠ·Π°Π·Π²Π°Π½ΠΈΠΌ ΠΠ’1. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ ΡΠ΅ Π΄Π° Π½ΠΈΠ²ΠΎ ΠΎΡΡΠ΅ΡΠ΅ΡΠ° ΡΠ΅ΡΡΠ΅ ΡΠΎΠΊΠΎΠΌ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅Ρa ΠΊΠΎΡΠ΅Π»ΠΈΡΠ΅ ΡΠ° ΠΏΡΠΈΡΡΡΡΠ²ΠΎΠΌ Π²Π°Π½ΡΠ΅Π»ΠΈΡΡΠΊΠΎΠ³ HMGB1. ΠΠ²Π°Ρ ΠΏΡΠΎΡΠ΅ΠΈΠ½, Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΎΡ ΡΠ΅ΡΡΠΈ, Π±ΠΈΠ²Π° ΡΡΡΡΠΊΡΡΡΠ½ΠΎ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠΎΠ²Π°Π½ Π°ΡΠ΅ΡΠΈΠ»Π°ΡΠΈΡΠΎΠΌ, ΡΠΎΡΡΠΎΡΠΈΠ»Π°ΡΠΈΡΠΎΠΌ ΠΈ O-GlcNAc Π³Π»ΠΈΠΊΠΎΠ·ΠΈΠ»Π°ΡΠΈΡΠΎΠΌ ΡΡΠΎ ΠΊΠΎΡΠ΅Π»ΠΈΡΠ΅ ΡΠ° ΡΠ΅Π³ΠΎΠ²ΠΈΠΌ ΠΈΠ·Π»Π°ΡΠΊΠΎΠΌ ΠΈΠ· ΡΠ΅Π΄ΡΠ° ΡΠ΅Π»ΠΈΡΠ° Ρ ΡΠΈΡΠΎΠΏΠ»Π°Π·ΠΌΡ ΠΈ ΠΏΠΎΠ²Π΅ΡΠ°ΡΠ΅ΠΌ ΡΠ΅Π³ΠΎΠ²ΠΎΠ³ ΠΏΡΠΈΡΡΡΡΠ²Π° Ρ ΡΠ΅ΡΡΠΈ ΠΈ ΡΠ΅ΡΡΠΌΡ. Π Π΅Π·ΡΠ»ΡΠ°ΡΠΈ Ρ Π²Π΅Π·ΠΈ ΡΠ° ΡΠ½ΠΈΠΆΠ°Π²Π°ΡeΠΌ Π½ΠΈΠ²ΠΎΠ° Π²Π°Π½ΡΠ΅Π»ΠΈΡΡΠΊΠΎΠ³ HMGB1 ΡΡΠ΅ΡΠΌΠ°Π½ΠΎΠΌ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΈΡ
ΠΏΠ°ΡΠΎΠ²Π° ΠΌΠ΅Π»Π°ΡΠΎΠ½ΠΈΠ½ΠΎΠΌ ΠΈΠ»ΠΈ Π΅ΡΠΈΠ» ΠΏΠΈΡΡΠ²Π°ΡΠΎΠΌ, ΡΠΊΠ°Π·ΡΡΡ Π΄Π° HMGB1 Π΄ΠΎΠΏΡΠΈΠ½ΠΎΡΠΈ ΠΎΡΡΠ΅ΡΠ΅ΡΡ ΡΠ΅ΡΡΠ΅ Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅ΡΡ ΠΎΠ΄ΡΠΆΠ°Π²Π°ΡΠ΅ΠΌ ΡΡΠ°ΡΠ° Ρ
ΡΠΎΠ½ΠΈΡΠ½Π΅ ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΠ΅, ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ΠΌ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°ΡΠΈΠ²Π½Π΅ ΠΎΠ΄Π±ΡΠ°Π½Π΅ ΠΈ ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ΠΌ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΡΠ΅. ΠΠ°Π½ΡΠ΅Π»ΠΈΡΡΠΊΠΈ HMGB1 ΠΊΡΠΎΠ· ΠΈΠ½ΡΠ΅ΡΠ°ΠΊΡΠΈΡΠ΅ ΡΠ° TLR4 ΡΠ΅ΡΠ΅ΠΏΡΠΎΡΠΎΠΌ Π°ΠΊΡΠΈΠ²ΠΈΡΠ° MAPΠ/NF-ΞΊB p65 ΠΈ ΠΠΠ1/STAT3 ΡΠΈΠ³Π½Π°Π»Π½Π΅ ΠΏΡΡΠ΅Π²Π΅, Π΄ΠΎΠΏΡΠΈΠ½ΠΎΡΠ΅ΡΠΈ ΠΏΠΎΠ²Π΅ΡΠ°ΡΡ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡΠ΅ ΠΏΡΠΎΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΡΠΊΠΈΡ
ΡΠΈΡΠΎΠΊΠΈΠ½Π° TNF-Ξ± ΠΈ IL-6 ΠΈ Π°ΠΊΡΡΠ½ΠΎ-ΡΠ°Π·Π½ΠΎΠ³ ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° Ρ
Π°ΠΏΡΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°. ΠΠΎΠ΄ΡΡΠΈΡΠ°ΡΠ΅ΠΌ NF-ΞΊB p65 ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΡΠΊΠΎΠ³ ΠΏΡΡΠ°, HMGB1 Π΄Π΅Π»ΡΡΠ΅ Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΎ Π½Π° ΡΠΈΡΠΎΠΏΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΠΈ ΠΎΠ΄Π³ΠΎΠ²ΠΎΡ Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠΈΡΠ½ΠΎΡ ΡΠ΅ΡΡΠΈ ΡΠ°ΠΊΠΎ ΡΡΠΎ ΠΎΠ½Π΅ΠΌΠΎΠ³ΡΡΠ°Π²Π° Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡ Nrf2 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π°, ΠΎΠ΄Π³ΠΎΠ²ΠΎΡΠ½ΠΎΠ³ Π·Π° ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ ΠΈΠ½ΡΠ»Π°ΠΌΠ°ΡΠΈΡΠ΅ ΠΈ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΡΡ Π°Π½ΡΠΈΠΎΠΊΡΠΈΠ΄Π°ΡΠΈΠ²Π½ΠΈΡ
Π΅Π½Π·ΠΈΠΌΠ°. ΠΠ° ΡΡΠΈΡΠ°Π²Π°ΡΠ΅ ΡΠ΅Π³Π΅Π½Π΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠ³ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π° ΡΠ΅ΡΡΠ΅, Π°ΠΊΡΠΈΠ²ΠΈΡΠ°Π½Π° HMGB1/TLR4 ΠΎΡΠ° ΡΡΠΈΡΠ΅ ΠΏΡΠ΅ΠΊΠΎ ΡΠ²Π΅ΡΠ°ΡΠ° ΠΏΡΠΈΡΡΡΡΠ²Π° Π½Π΅Π³Π°ΡΠΈΠ²Π½ΠΈΡ
ΡΠ΅Π³ΡΠ»Π°ΡΠΎΡΠ° ΡΠ΅Π»ΠΈΡΡΠΊΠΎΠ³ ΡΠΈΠΊΠ»ΡΡΠ° - ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° p53 ΠΈ p21, ΠΈ ΡΠΌΠ°ΡΠ΅ΡΠ΅ΠΌ Π½ΠΈΠ²ΠΎΠ°
ΡΠΈΠΊΠ»ΠΈΠ½Π° D1. ΠΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ ΡΠΊΠ°Π·ΡΡΡ Π½Π° ΡΠ»ΠΎΠΆΠ΅Π½ΠΎΡΡ Π΄Π΅Π»ΠΎΠ²Π°ΡΠ° HMGB1 ΠΏΡΠΎΡΠ΅ΠΈΠ½Π° Ρ Π΄ΠΈΡΠ°Π±Π΅ΡΠ΅ΡΡ ΠΈ Π½Π° Π·Π½Π°ΡΠ°Ρ ΡΠΏΡΠ΅ΡΠ°Π²Π°ΡΠ° ΠΎΡΠ»ΠΎΠ±Π°ΡΠ°ΡΠ° HMGB1 ΠΈΠ»ΠΈ Π±Π»ΠΎΠΊΠ°Π΄Π΅ HMGB1/TLR4 ΠΎΡΠ΅ Ρ ΡΠΈΡΡ ΠΎΠ΄Π»Π°Π³Π°ΡΠ° Π½Π°ΡΡΠ°Π½ΠΊΠ° ΠΎΡΡΠ΅ΡΠ΅ΡΠ° ΡΠ΅ΡΡΠ΅.Oxidative stress and chronic inflammation are considered to be the main causes of diabetic complications, one of which is liver damage. An important mediator of these processes may be the endogenous HMGB1 protein, when released into the extracellular environment from the necrotic, damaged or activated cells. As the HMGB1 role in diabetes was insufficiently studied, in this doctoral dissertation the contribution of HMGB1 to liver damage of streptozotocin-induced diabetic rats was investigated. It has been shown that the level of liver damage in diabetes correlates with the presence of extracellular HMGB1. In diabetic liver, this protein is structurally modified by acetylation, phosphorylation, and O-GlcNAc glycosylation, which correlates with its translocation from the nucleus to the cytoplasm and an increase in its presence in the liver and serum. Reduction of the level of extracellular HMGB1 by melatonin or ethyl pyruvate treatment of diabetic rats, shows that HMGB1 contributes to diabetic liver damage by maintaining a chronic inflammation, by lowering antioxidant defense and by reducing regeneration. Extracellular HMGB1 activates MAPK/NF-ΞΊB p65 and JAK1/STAT3 signaling pathways through interactions with the TLR4 receptor, thus contributing increased production of proinflammatory cytokines TNF-Ξ± and IL-6 and the acute-phase protein, haptoglobin. By stimulating the NF-ΞΊB p65 inflammatory pathway, HMGB1 acts negatively on the cytoprotective response of the diabetic liver, by disabling Nrf2 protein activity, which is responsible for reduction of inflammation and antioxidant enzymes production. Activated HMGB1/TLR4 axis reduces regenerative potential of the liver by increasing the presence of negative cell cycle regulators - proteins p53 and p21, and also by decreasing the level of cyclin D1. The obtained results indicate the complexity of HMGB1 protein action in diabetes and
underlines the importance of preventing the release of HMGB1 or blockage of HMGB1/TLR4 axis in order to delay the occurrence of liver damage
Anti-melanoma effects of ingenanes isolated from Euphorbia species
In this research, from two species, E. palustris and E. lucida, four ingenane derivatives were isolated. Their anticancer effects were evaluated in the human melanoma β 518A2 cell line and compared with the effects of ingenolmebutate. Selectivity towards human melanoma cells was determined using normal human keratinocytes β HaCaT.11th Conference on Medicinal and Aromatic Plants of Southeast European Countries, (11th CMAPSEEC), Ohrid, North Macedonia, 6β10 October 202
ΠΠ½Ρ ΠΈΠ±ΠΈΡΠΈΡΠ° Π°ΡΡΠΎΡΠ°Π³ΠΈΡΠ΅ ΡΠ΅Π½Π·ΠΈΡΠΈΠ·ΡΡΠ΅ ΡΠ΅Π»ΠΈΡΠ΅ Π³Π»ΠΈΠΎΠ±Π»Π°ΡΡΠΎΠΌΠ° Π½Π° ΠΈΠ½Ρ ΠΈΠ±ΠΈΡΠΎΡΠ΅ Π‘ΡΡ ΡΠΈΡΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Π΅, Π΄Π΅ΡΠΈΠ²Π°ΡΠ΅ ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎ[3,4- Π΄]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½Π° Si306 ΠΈ pro-Si306
Glioblastom je jedan od najagresivnijih tumora mozga koji karakteriΕ‘e
infiltrirajuΔa priroda, intenzivna proliferacija i rezistencija na terapiju.
Δelije glioblastoma imaju visoku ekspresiju Src tirozin-kinaze koja reguliΕ‘e
proliferaciju, preΕΎivljavanje i invazivnost tumorskih Δelija ΔineΔi je
potencijalnom metom za terapiju. Inhibitori tirozin-kinaza mogu indukovati
autofagiju koja deluje protektivno na tumorske Δelije. Sposobnost inhibitora
Src tirozin-kinaze, derivata pirazolo[3,4-d]pirimidina Si306 i njegovog proleka
pro-Si306, da indukuju autofagiju ispitana je na Δelijskoj liniji humanog
glioblastoma U87 i njenoj varijanti sa viΕ‘estrukom rezistencijom na lekove
U87-TxR. Tretman ovim jedinjenjima uzrokovao je pojavu autofagozoma u Δelijama
nakon 3 sata, a efekat na indukciju autofagije opstao je i nakon 48 sati Ε‘to je
utvrΔeno analizom markera autofagije LC3 i p62. Inhibicija autofagnog fluksa
bafilomicinom A1 znaΔajno je uveΔala postojeΔe anti-proliferativno dejstvo
Si306 i pro-Si306. TakoΔe, kombinovani tretmani Src inhibitora sa
bafilomicinom A1 doveli su do nekroze nakon 48 sati. Dobijeni rezultati
sugeriΕ‘u da autofagija indukovana ovim jedinjenjima ima zaΕ‘titnu ulogu u
Δelijama glioblastoma i da se modulacija autofagije moΕΎe koristiti za
senzitizaciju Δelija glioblastoma na inhibitore Src tirozin-kinaze. Pored toga,
pomenuti efekti Si306 i pro-Si306 nisu umanjeni prisustvom viΕ‘estruko-
rezistentnog fenotipa, Ε‘to ovim jedinjenjima daje potencijal za leΔenje
rezistentnih tumora.ΠΠ»ΠΈΠΎΠ±Π»Π°ΡΡΠΎΠΌ ΡΠ΅ ΡΠ΅Π΄Π°Π½ ΠΎΠ΄ Π½Π°ΡΠ°Π³ΡΠ΅ΡΠΈΠ²Π½ΠΈΡΠΈΡ
ΡΡΠΌΠΎΡΠ° ΠΌΠΎΠ·Π³Π° ΠΊΠΎΡΠΈ ΠΊΠ°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΠ΅
ΠΈΠ½ΡΠΈΠ»ΡΡΠΈΡΠ°ΡΡΡΠ° ΠΏΡΠΈΡΠΎΠ΄Π°, ΠΈΠ½ΡΠ΅Π½Π·ΠΈΠ²Π½Π° ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡΠ° ΠΈ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠΈΡΠ° Π½Π° ΡΠ΅ΡΠ°ΠΏΠΈΡΡ.
ΠΠ΅Π»ΠΈΡΠ΅ Π³Π»ΠΈΠΎΠ±Π»Π°ΡΡΠΎΠΌΠ° ΠΈΠΌΠ°ΡΡ Π²ΠΈΡΠΎΠΊΡ Π΅ΠΊΡΠΏΡΠ΅ΡΠΈΡΡ Π‘ΡΡ ΡΠΈΡΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Π΅ ΠΊΠΎΡΠ° ΡΠ΅Π³ΡΠ»ΠΈΡΠ΅
ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΡΡ, ΠΏΡΠ΅ΠΆΠΈΠ²ΡΠ°Π²Π°ΡΠ΅ ΠΈ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎΡΡ ΡΡΠΌΠΎΡΡΠΊΠΈΡ
ΡΠ΅Π»ΠΈΡΠ° ΡΠΈΠ½Π΅ΡΠΈ ΡΠ΅
ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π»Π½ΠΎΠΌ ΠΌΠ΅ΡΠΎΠΌ Π·Π° ΡΠ΅ΡΠ°ΠΏΠΈΡΡ. ΠΠ½Ρ
ΠΈΠ±ΠΈΡΠΎΡΠΈ ΡΠΈΡΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Π° ΠΌΠΎΠ³Ρ ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°ΡΠΈ
Π°ΡΡΠΎΡΠ°Π³ΠΈΡΡ ΠΊΠΎΡΠ° Π΄Π΅Π»ΡΡΠ΅ ΠΏΡΠΎΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π½Π° ΡΡΠΌΠΎΡΡΠΊΠ΅ ΡΠ΅Π»ΠΈΡΠ΅. Π‘ΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ ΠΈΠ½Ρ
ΠΈΠ±ΠΈΡΠΎΡΠ°
Π‘ΡΡ ΡΠΈΡΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Π΅, Π΄Π΅ΡΠΈΠ²Π°ΡΠ° ΠΏΠΈΡΠ°Π·ΠΎΠ»ΠΎ[3,4-Π΄]ΠΏΠΈΡΠΈΠΌΠΈΠ΄ΠΈΠ½Π° Si306 ΠΈ ΡΠ΅Π³ΠΎΠ²ΠΎΠ³ ΠΏΡΠΎΠ»Π΅ΠΊΠ°
pro-Si306, Π΄Π° ΠΈΠ½Π΄ΡΠΊΡΡΡ Π°ΡΡΠΎΡΠ°Π³ΠΈΡΡ ΠΈΡΠΏΠΈΡΠ°Π½Π° ΡΠ΅ Π½Π° ΡΠ΅Π»ΠΈΡΡΠΊΠΎΡ Π»ΠΈΠ½ΠΈΡΠΈ Ρ
ΡΠΌΠ°Π½ΠΎΠ³
Π³Π»ΠΈΠΎΠ±Π»Π°ΡΡΠΎΠΌΠ° U87 ΠΈ ΡΠ΅Π½ΠΎΡ Π²Π°ΡΠΈΡΠ°Π½ΡΠΈ ΡΠ° Π²ΠΈΡΠ΅ΡΡΡΡΠΊΠΎΠΌ ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠΈΡΠΎΠΌ Π½Π° Π»Π΅ΠΊΠΎΠ²Π΅
U87-TxR. Π’ΡΠ΅ΡΠΌΠ°Π½ ΠΎΠ²ΠΈΠΌ ΡΠ΅Π΄ΠΈΡΠ΅ΡΠΈΠΌΠ° ΡΠ·ΡΠΎΠΊΠΎΠ²Π°ΠΎ ΡΠ΅ ΠΏΠΎΡΠ°Π²Ρ Π°ΡΡΠΎΡΠ°Π³ΠΎΠ·ΠΎΠΌΠ° Ρ ΡΠ΅Π»ΠΈΡΠ°ΠΌΠ°
Π½Π°ΠΊΠΎΠ½ 3 ΡΠ°ΡΠ°, Π° Π΅ΡΠ΅ΠΊΠ°Ρ Π½Π° ΠΈΠ½Π΄ΡΠΊΡΠΈΡΡ Π°ΡΡΠΎΡΠ°Π³ΠΈΡΠ΅ ΠΎΠΏΡΡΠ°ΠΎ ΡΠ΅ ΠΈ Π½Π°ΠΊΠΎΠ½ 48 ΡΠ°ΡΠΈ ΡΡΠΎ ΡΠ΅
ΡΡΠ²ΡΡΠ΅Π½ΠΎ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ ΠΌΠ°ΡΠΊΠ΅ΡΠ° Π°ΡΡΠΎΡΠ°Π³ΠΈΡΠ΅ LC3 ΠΈ p62. ΠΠ½Ρ
ΠΈΠ±ΠΈΡΠΈΡΠ° Π°ΡΡΠΎΡΠ°Π³Π½ΠΎΠ³ ΡΠ»ΡΠΊΡΠ°
Π±Π°ΡΠΈΠ»ΠΎΠΌΠΈΡΠΈΠ½ΠΎΠΌ Π1 Π·Π½Π°ΡΠ°ΡΠ½ΠΎ ΡΠ΅ ΡΠ²Π΅ΡΠ°Π»Π° ΠΏΠΎΡΡΠΎΡΠ΅ΡΠ΅ Π°Π½ΡΠΈ-ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎ Π΄Π΅ΡΡΡΠ²ΠΎ
Si306 ΠΈ pro-Si306. Π’Π°ΠΊΠΎΡΠ΅, ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΎΠ²Π°Π½ΠΈ ΡΡΠ΅ΡΠΌΠ°Π½ΠΈ Π‘ΡΡ ΠΈΠ½Ρ
ΠΈΠ±ΠΈΡΠΎΡΠ° ΡΠ°
Π±Π°ΡΠΈΠ»ΠΎΠΌΠΈΡΠΈΠ½ΠΎΠΌ Π1 Π΄ΠΎΠ²Π΅Π»ΠΈ ΡΡ Π΄ΠΎ Π½Π΅ΠΊΡΠΎΠ·Π΅ Π½Π°ΠΊΠΎΠ½ 48 ΡΠ°ΡΠΈ. ΠΠΎΠ±ΠΈΡΠ΅Π½ΠΈ ΡΠ΅Π·ΡΠ»ΡΠ°ΡΠΈ
ΡΡΠ³Π΅ΡΠΈΡΡ Π΄Π° Π°ΡΡΠΎΡΠ°Π³ΠΈΡΠ° ΠΈΠ½Π΄ΡΠΊΠΎΠ²Π°Π½Π° ΠΎΠ²ΠΈΠΌ ΡΠ΅Π΄ΠΈΡΠ΅ΡΠΈΠΌΠ° ΠΈΠΌΠ° Π·Π°ΡΡΠΈΡΠ½Ρ ΡΠ»ΠΎΠ³Ρ Ρ
ΡΠ΅Π»ΠΈΡΠ°ΠΌΠ° Π³Π»ΠΈΠΎΠ±Π»Π°ΡΡΠΎΠΌΠ° ΠΈ Π΄Π° ΡΠ΅ ΠΌΠΎΠ΄ΡΠ»Π°ΡΠΈΡΠ° Π°ΡΡΠΎΡΠ°Π³ΠΈΡΠ΅ ΠΌΠΎΠΆΠ΅ ΠΊΠΎΡΠΈΡΡΠΈΡΠΈ Π·Π°
ΡΠ΅Π½Π·ΠΈΡΠΈΠ·Π°ΡΠΈΡΡ ΡΠ΅Π»ΠΈΡΠ° Π³Π»ΠΈΠΎΠ±Π»Π°ΡΡΠΎΠΌΠ° Π½Π° ΠΈΠ½Ρ
ΠΈΠ±ΠΈΡΠΎΡΠ΅ Π‘ΡΡ ΡΠΈΡΠΎΠ·ΠΈΠ½-ΠΊΠΈΠ½Π°Π·Π΅. ΠΠΎΡΠ΅Π΄ ΡΠΎΠ³Π°,
ΠΏΠΎΠΌΠ΅Π½ΡΡΠΈ Π΅ΡΠ΅ΠΊΡΠΈ Si306 ΠΈ pro-Si306 Π½ΠΈΡΡ ΡΠΌΠ°ΡΠ΅Π½ΠΈ ΠΏΡΠΈΡΡΡΡΠ²ΠΎΠΌ Π²ΠΈΡΠ΅ΡΡΡΡΠΊΠΎ-
ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΎΠ³ ΡΠ΅Π½ΠΎΡΠΈΠΏΠ°, ΡΡΠΎ ΠΎΠ²ΠΈΠΌ ΡΠ΅Π΄ΠΈΡΠ΅ΡΠΈΠΌΠ° Π΄Π°ΡΠ΅ ΠΏΠΎΡΠ΅Π½ΡΠΈΡΠ°Π» Π·Π° Π»Π΅ΡΠ΅ΡΠ΅
ΡΠ΅Π·ΠΈΡΡΠ΅Π½ΡΠ½ΠΈΡ
ΡΡΠΌΠΎΡΠ°.Knjiga saΕΎetaka: TreΔi Kongres biologa Srbije, Zlatibor, Srbija 21 - 25. 9. 2022
Unveiling Anticancer Potential of COX-2 and 5-LOX Inhibitors: Cytotoxicity, Radiosensitization Potential and Antimigratory Activity against Colorectal and Pancreatic Carcinoma
Apart from cytotoxicity, inhibitors of the COX-2 enzyme have demonstrated additional effects important for cancer treatment (such as radiosensitization of tumor cells and cell antimigratory effects); however, the relationship between the inhibition of other inflammation-related enzyme 5-LOX inhibitors and anticancer activity is still not well understood. In our study, the cytotoxicity of thirteen COX-2 and 5-LOX inhibitors previously presented by our group (1β13) was tested on three cancer cell lines (HCT 116, HT-29 and BxPC-3) and one healthy cell line (MRC-5). Compounds 3, 5, 6 and 7 showed moderate cytotoxicity, but good selectivity towards cancer cell lines. IC50 values were in the range of 22.99β51.66 Β΅M (HCT 116 cell line), 8.63β41.20 Β΅M (BxPC-3 cell line) and 24.78β81.60 Β΅M (HT-29 cell line; compound 7 > 100 Β΅M). In comparison to tested, commercially available COX-2 and 5-LOX inhibitors, both cytotoxicity and selectivity were increased. The addition of compounds 6 and 7 to irradiation treatment showed the most significant decrease in cell proliferation of the HT-29 cell line (p < 0.001). The antimigratory potential of the best dual COX-2 and 5-LOX inhibitors (compounds 1, 2, 3 and 5) was tested by a wound-healing assay using the SW620 cell line. Compounds 1 and 3 were singled out as compounds with the most potent effect (relative wound closure was 3.20% (24 h), 5,08% (48 h) for compound 1 and 3.86% (24 h), 7.68% (48 h) for compound 3). Considering all these results, compound 3 stood out as the compound with the most optimal biological activity, with the best dual COX-2 and 5-LOX inhibitory activity, good selectivity towards tested cancer cell lines, significant cell antimigratory potential and a lack of toxic effects at therapeutic doses
Autophagy Inhibition Enhances Anti-Glioblastoma Effects of Pyrazolo[3,4-d]pyrimidine Tyrosine Kinase Inhibitors
Drug resistance presents a major obstacle to the successful treatment of glioblastoma. Autophagy plays a key role in drug resistance, particularly in relation to targeted therapy, which has prompted the use of autophagy inhibitors to increase the effectiveness of targeted therapeutics. The ability of two Src tyrosine kinase inhibitors, Si306 and its prodrug pro-Si306, to induce autophagy was evaluated in the human glioblastoma cell line U87 and its multidrug-resistant counterpart U87-TxR. Autophagy markers were assessed by flow cytometry, microscopy, and Western blot, and induction of autophagy by these compounds was demonstrated after 3 h as well as 48 h. The effects of Si306 and pro-Si306 on cell proliferation and cell death were examined in the presence or absence of autophagy inhibition by bafilomycin A1. Combined treatments of Si306 and pro-Si306 with bafilomycin A1 were synergistic in nature, and the inhibition of autophagy sensitized glioblastoma cells to Src tyrosine kinase inhibitors. Si306 and pro-Si306 more strongly inhibited cell proliferation and triggered necrosis in combination with bafilomycin A1. Our findings suggest that modulation of Si306- and pro-Si306-induced autophagy can be used to enhance the anticancer effects of these Src tyrosine kinase inhibitors and overcome the drug-resistant phenotype in glioblastoma cells
Anti-invasive effects of CXCR4 and FAK inhibitors in non-small cell lung carcinomas with mutually inactivated p53 and PTEN tumor suppressors
Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer. At the time of diagnosis, a large percentage of NSCLC patients have already developed metastasis, responsible for extremely high mortality rates. CXCR4 receptor and focal adhesion kinase (FAK) are known to regulate such invasive cancer behavior. Their expression is downregulated by p53 and PTEN tumor suppressors which are commonly co-inactivated in NSCLC patients and contribute to metastasis. Therefore, targeting CXCR4 or FAK seems to be a promising strategy in suppressing metastatic spread of p53/PTEN deficient NSCLCs. In this study, we first examined the invasive characteristics of NSCLC cells with suppressed p53 and PTEN activity using wound healing, gelatin degradation and invasion assays. Further, changes in the expression of CXCR4 and FAK were evaluated by RT-qPCR and Western Blot analysis. Finally, we tested the ability of CXCR4 and FAK inhibitors (WZ811 and PF-573228, respectively) to suppress the migratory and invasive potential of p53/PTEN deficient NSCLC cells, in vitro and in vivo using metastatic models of human NSCLC. Our results showed that cells with mutually inactive p53 and PTEN have significantly increased invasive potential associated with hyperactivation of CXCR4 and FAK signaling pathways. Treatments with WZ811 and PF-573228 inhibitors significantly reduced migratory and invasive capacity in vitro and showed a trend of improved survival in vivo. Accordingly, we demonstrated that p53/PTEN deficient NSCLCs have extremely invasive phenotype and provided a rationale for the use of CXCR4 or FAK inhibitors for the suppression of NSCLC dissemination.This is a post-peer-review, pre-copyedit version of an article published in Investigational New Drugs. The final authenticated version is available online at: [http://dx.doi.org/10.1007/s10637-017-0494-4
Modulation of diabetes-related liver injury by the HMGB1/TLR4 inflammatory pathway.
Chronic inflammation plays an essential role in the development of diabetic complications. Understanding the molecular mechanisms that support inflammation is a prerequisite for the design of novel anti-inflammatory therapies. These would take into consideration circulating levels of cytokines and damage-associated molecular patterns (DAMPs) that include the high mobility group box 1 (HMGB1) protein which, in part, promotes the inflammatory response through TLR4 signaling. The liver, as the source of circulating cytokines and acute-phase proteins, contributes to the control of systemic inflammation. We previously found that liver injury in streptozotocin-induced diabetic rats correlated with the level of oxidative stress, increased expression of HMGB1, and with the activation of TLR4-mediated cell death pathways. In the present work, we examined the effects of ethyl pyruvate (EP), an inhibitor of HMGB1 release/expression, on the modulation of activation of the HMGB1/TLR4 inflammatory cascade in diabetic liver. We observed that increased expression of inflammatory markers, TNF-Ξ±, IL-6, and haptoglobin in diabetic liver was associated with increased HMGB1/TLR4 interaction, activation of MAPK (p38, ERK, JNK)/NF-ΞΊB p65 and JAK1/STAT3 signaling pathways, and with decreased expression of Nrf2-regulated antioxidative enzymes. The reduction in HMGB1 expression as the result of EP administration reduced the pro-inflammatory activity of HMGB1 and exerted a protective effect on diabetic liver, which was observed as improved liver histology and antioxidant and inflammatory statuses. Our results suggest that prevention of HMGB1 release and blockage of the HMGB/TLR4 axis represents a potentially effective therapeutic strategy aimed at ameliorating diabetes-induced inflammation and ensuing liver injury.This is a post-peer-review, pre-copyedit version of an article published in Journal of Physiology and Biochemistry. The final authenticated version is available online at: [http://dx.doi.org/10.1007/s13105-018-0626-0
New anti-glioblastoma strategy with natural compounds sclareol and doxorubicin
Background: Doxorubicin (DOX) has been very effective against glioblastoma invitro. Its application in vivo is hampered because it cannot pass the bloodβbrainbarrier (BBB). Significant research efforts are invested to overcome this limitation.Sclareol (SC) is an aromatic compound naturally found in clary sage. Thecombination of SC and DOX showed promising effects in different tumor types invitro and in vivo. Therefore, we tested their combination and innovative hybridmolecules (SC:DOX) on glioblastoma cells with the expression of P-glycoprotein, amajor component of BBB and cancer multidrug resistance marker. Methods:Cytotoxicity and selectivity towards glioblastoma cells of SC, DOX, theircombination, and SC:DOX were examined by MTT assay. The effect of SC on DOXaccumulation was determined by flow cytometry. We also studied SC:DOXaccumulation, cellular uptake, localization imaging, and DNA damage induction.Results: The effects of simultaneous SC and DOX treatments demonstrated theconsiderable potential of SC to reverse DOX resistance in glioblastoma cells andincrease DOX accumulation. SC:DOX hybrids, named CON1 and CON2 were lesscytotoxic than DOX, but with reduced resistance and increased selectivity towardsglioblastoma cells. Cellular uptake of CON1 and CON2 was increased in glioblastomacells compared to DOX. Perinuclear localization of CON1 and CON2 vs. nuclearlocalization of DOX as well as no DNA damaging effects suggest a differentmechanism of action for SC:DOX. Conclusion: The combination of SC and DOX, andtheir innovative hybrids, could be considered a promising strategy that can overcomethe limitations of DOX application in glioblastoma.Kanazir S, SaviΔ D, editors. Book of abstracts: 8th Congress of Serbian neuroscience society with international participation; 2023 May 31 - Jun 2; Belgrade, Serbia. Belgrade : Serbian Neuroscience Society; 2023. p. 71
Unveiling Anticancer Potential of COX-2 and 5-LOX Inhibitors: Cytotoxicity, Radiosensitization Potential and Antimigratory Activity against Colorectal and Pancreatic Carcinoma
Apart from cytotoxicity, inhibitors of the COX-2 enzyme have demonstrated additional effects important for cancer treatment (such as radiosensitization of tumor cells and cell antimigratory effects); however, the relationship between the inhibition of other inflammation-related enzyme 5-LOX inhibitors and anticancer activity is still not well understood. In our study, the cytotoxicity of thirteen COX-2 and 5-LOX inhibitors previously presented by our group (1-13) was tested on three cancer cell lines (HCT 116, HT-29 and BxPC-3) and one healthy cell line (MRC-5). Compounds 3, 5, 6 and 7 showed moderate cytotoxicity, but good selectivity towards cancer cell lines. IC50 values were in the range of 22.99-51.66 Β΅M (HCT 116 cell line), 8.63-41.20 Β΅M (BxPC-3 cell line) and 24.78-81.60 Β΅M (HT-29 cell line; compound 7 > 100 Β΅M). In comparison to tested, commercially available COX-2 and 5-LOX inhibitors, both cytotoxicity and selectivity were increased. The addition of compounds 6 and 7 to irradiation treatment showed the most significant decrease in cell proliferation of the HT-29 cell line (p < 0.001). The antimigratory potential of the best dual COX-2 and 5-LOX inhibitors (compounds 1, 2, 3 and 5) was tested by a wound-healing assay using the SW620 cell line. Compounds 1 and 3 were singled out as compounds with the most potent effect (relative wound closure was 3.20% (24 h), 5,08% (48 h) for compound 1 and 3.86% (24 h), 7.68% (48 h) for compound 3). Considering all these results, compound 3 stood out as the compound with the most optimal biological activity, with the best dual COX-2 and 5-LOX inhibitory activity, good selectivity towards tested cancer cell lines, significant cell antimigratory potential and a lack of toxic effects at therapeutic doses