5 research outputs found

    Experimental and Discrete Element Model Investigation of Limestone Aggregate Blending Process in Vertical Static and/or Conveyor Mixer for Application in the Concrete Mixture

    Get PDF
    The numerical model of the granular flow within an aggregate mixture, conducted in the vertical static and/or the conveyor blender, was explored using the discrete element method (DEM) approach. The blending quality of limestone fine aggregate fractions binary mixture for application in self-compacting concrete was studied. The potential of augmenting the conveyor mixer working efficiency by joining its operation to a Komax-type vertical static mixer, to increase the blending conduct was investigated. In addition the impact of the feed height on the flow field in the cone-shaped conveyor mixer was examined using the DEM simulation. Applying the numerical approach enabled a deeper insight into the quality of blending actions, while the relative standard deviation criteria ranked the uniformity of the mixture. The primary objective of this investigation was to examine the behavior of mixture for two types of blenders and to estimate the combined blending action of these two mixers, to explore the potential to augment the homogeneity of the aggregate fractions binary mixture, i.e., mixing quality, reduce the blending time and to abbreviate the energy-consuming

    Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    No full text
    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

    Application of agile methodologies in software development

    No full text
    The paper presents the potentials for the development of software using agile methodologies. Special consideration is devoted to the potentials and advantages of use of the Scrum methodology in the development of software and the relationship between the implementation of agile methodologies and the software development projects

    Mathematical model, numerical simulation and optimization of rotating valve feeder in animal feed production

    No full text
    The processes of transportation of bulk materials from silos and hoppers are significant in various industrial applications because of their influences on material characteristics and working parameters of the production process. In this paper, a rotating valve feeder, with eight vanes was investigated for transport action of bulk materials, such as wheat, maize and rice, which were ground, using the sieve sizes of 1, 3 and 5 mm. The rotating valve feeders under investigation have proven to be useful in transportation processes despite their construction simplicity. All investigations were done experimentally and numerically, using coupled Discrete Element Method (DEM) and Computational Fluid Dynamics calculation (CFD). The influences of different types of bulk materials and its particle size, on the performances of the rotating valve feeder during material transport were explored. The artificial neural network was developed (in the form of a multi-layer perceptron model) in order to optimize the granular flow of the bulk material, showing the high prediction capability of bulk density, dosing time and granular material flow, with the coefficient of determination equal to 0.999 during the training period. The decreasing of the sieve opening diameter caused the decrease in bulk density of the ground material, but statistically significant only for rice, as seen from the experiments and the results of the neural network model. The 5 mm sieve ensured the material with the highest flowability, significantly increasing the granular flow and decreasing the dosing time. The granular particles were modelled as the spheres in the DEM/CFD simulation, with a small-sized triangular surfaces. The DEM/CFD prediction of the mass transport for rice, wheat and maize was quite adequate, obtaining the coefficient of determination being 0.997; 0.998 and 0.849, respectively
    corecore