31 research outputs found

    Subplate Zone of the Human Brain: Historical Perspective and New Concepts

    Get PDF
    Subplate zone (SP) is prominent, transient laminar compartment of the human fetal cerebral wall. The SP develops around 13 and gradually disappears after 32–34 postovulatory weeks. The SP neurons can be found as late as nine postnatal months, while remnants of the SP neurons can be traced until adult age in the form of interstitial neurons of the gyral white matter. SP is composed of postmigratory and migratory neurons, growth cones, loosely arranged axons, dendrites, glial cell and synapses. The remarkable feature of the SP is the presence of large amount of extracellular matrix. This feature can be used for delineation of SP in magnetic resonance images (MRI) of both, in vivo and post mortem brains. The importance of SP as the main synaptic zone of the human fetal cortex is based on the rich input of »waiting« afferents from thalamus and cortex, during the crucial phase of cortical target area selection. SP increases during mammalian evolution and culminates in human brain concomitantly with increase in number and diversity of cortico-cortical fibers. The recent neurobiological evidence shows that SP is important site of spontaneous endogeneous activity, building a framework for development of cortical columnar organization. The SP, which can be readily visualized on conventional and DTI (diffusion-tensor-imaging) MRI in vivo, today is in the focus of interest of pediatric neurology due to the following facts: (1) SP is the site of early neural activity, (2) SP is the major substrate for functional plasticity, and (3) selective vulnerability of SP may lead to cognitive impairment

    Quantitative Analysis of Basal Dendritic Tree of Layer IIIc Pyramidal Neurons in Different Areas of Adult Human Frontal Cortex

    Get PDF
    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca’s speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA’s. In addition, we analyzed each of these BA’s immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network

    Growth of the Human Corpus Callosum: Modular and Laminar Morphogenetic Zones

    Get PDF
    The purpose of this focused review is to present and discuss recent data on the changing organization of cerebral midline structures that support the growth and development of the largest commissure in humans, the corpus callosum. We will put an emphasis on the callosal growth during the period between 20 and 45 postconceptual weeks (PCW) and focus on the advantages of a correlated histological/magnetic resonance imaging (MRI) approach. The midline structures that mediate development of the corpus callosum in rodents, also mediate its early growth in humans. However, later phases of callosal growth in humans show additional medial transient structures: grooves made up of callosal septa and the subcallosal zone. These modular (septa) and laminar (subcallosal zone) structures enable the growth of axons along the ventral callosal tier after 18 PCW, during the rapid increase in size of the callosal midsagittal cross-section area. Glial fibrillary acidic protein positive cells, neurons, guidance molecule semaphorin3A in cells and extracellular matrix (ECM), and chondroitin sulfate proteoglycan in the ECM have been identified along the ventral callosal tier in the protruding septa and subcallosal zone. Postmortem MRI at 3 T can demonstrate transient structures based on higher water content in ECM, and give us the possibility to follow the growth of the corpus callosum in vivo, due to the characteristic MR signal. Knowledge about structural properties of midline morphogenetic structures may facilitate analysis of the development of interhemispheric connections in the normal and abnormal fetal human brain

    Quantitative Analysis of Basal Dendritic Tree of Layer IIIc Pyramidal Neurons in Different Areas of Adult Human Frontal Cortex

    Get PDF
    Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca’s speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA’s. In addition, we analyzed each of these BA’s immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network

    Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy

    Get PDF
    The role of heterotopic (migratory) motoneurons (HMN) in the pathogenesis of spinal muscular atrophy (SMA) is still controversial. We examined the occurrence and amount of HMN in spinal cord tissue from eight children with SMA (six with SMA-I and two with SMA-II). All affected subjects were carrying a homozygous deletion of exon 7 in the SMN1 gene. Unlike controls, virtually free from HMN, all SMA subjects showed a significant number of HMN at all levels of the spinal cord. Heterotopic neurons were hyperchromatic, located mostly in the ventral white matter and had no axon or dendrites. More than half of the HMN were very undifferentiated, as judged from their lack of immunoreactivity for NeuN and MAP2 proteins. Small numbers of more differentiated heterotopic neurons were also found in the dorsal and lateral white matter region. As confirmed by ultrastructural analysis, in situ end labeling (ISEL) and CD68 immunoreactivity, HMN in the ventral outflow were found to have no synapses, to activate microglial cells, and to eventually die by necrosis. An unbiased quantitative analysis showed a significant negative correlation between age of SMA subjects (a reflection of the clinical severity) and the number of HMN. Subjects who died at older ages had increased number of GFAP-positive astrocytes. Complementing our previous report on motoneuron apoptosis within the ventral horns in SMA, we now propose that abnormal migration, differentiation, and lack of axonal outgrowth may induce motoneuron apoptosis predominantly during early stages, whereas a slower necrosis-like cell death of displaced motoneurons which "escaped" apoptosis characterizes later stages of SMA

    The protracted maturation of associative layer IIIC pyramidal neurons in the human prefrontal cortex during childhood: a major role in cognitive development and selective alteration in autism

    Get PDF
    The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders

    Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant No. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138. We also thank Mate Babić for help in preparation of schematics.Peer reviewedPublisher PD

    Monoaminergic Neuropathology in Alzheimer's disease

    Get PDF
    Acknowledgments This work was supported by The Croatian Science Foundation grant. no. IP-2014-09-9730 (“Tau protein hyperphosphorylation, aggregation, and trans-synaptic transfer in Alzheimer’s disease: cerebrospinal fluid analysis and assessment of potential neuroprotective compounds”) and European Cooperation in Science and Technology (COST) Action CM1103 (“Stucture-based drug design for diagnosis and treatment of neurological diseases: dissecting and modulating complex function in the monoaminergic systems of the brain”). PRH is supported in part by NIH grant P50 AG005138.Peer reviewedPostprin

    Hippocampal expression of cell-adhesion glycoprotein neuroplastin is altered in Alzheimer's disease

    Get PDF
    Cell-adhesion glycoprotein neuroplastin (Np) is involved in the regulation of synaptic plasticity and balancing hippocampal excitatory/inhibitory inputs which aids in the process of associative memory formation and learning. Our recent findings show that neuroplastin expression in the adult human hippocampus is specifically associated with major hippocampal excitatory pathways and is related to neuronal calcium regulation. Here, we investigated the hippocampal expression of brain-specific neuroplastin isoform (Np65), its relationship with amyloid and tau pathology in Alzheimer's disease (AD), and potential involvement of neuroplastin in tissue response during the disease progression. Np65 expression and localization was analysed in six human hippocampi with confirmed AD neuropathology, and six age-/gender-matched control hippocampi by imunohistochemistry. In AD cases with shorter disease duration, the Np65 immunoreactivity was significantly increased in the dentate gyrus (DG), Cornu Ammonis 2/3 (CA2/3), and subiculum, with the highest level of Np expression being located on the dendrites of granule cells and subicular pyramidal neurons. Changes in the expression of neuroplastin in AD hippocampal areas seem to be related to the progression of disease. Our study suggests that cell-adhesion protein neuroplastin is involved in tissue reorganization and is a potential molecular marker of plasticity response in the early neurodegeneration process of AD

    Subplate zone of the human brain: historical perspective and new concepts

    Get PDF
    Subplate zone (SP) is prominent, transient laminar compartment of the human fetal cerebral wall. The SP develops around 13 and gradually disappears after 32-34 postovulatory weeks. The SP neurons can be found as late as nine postnatal months, while remnants of the SP neurons can be traced until adult age in the form of interstitial neurons of the gyral white matter. SP is composed of postmigratory and migratory neurons, growth cones, loosely arranged axons, dendrites, glial cell and synapses. The remarkable feature of the SP is the presence of large amount of extracellular matrix. This feature can be used for delineation of SP in magnetic resonance images (MRI) of both, in vivo and post mortem brains. The importance of SP as the main synaptic zone of the human fetal cortex is based on the rich input of ,waiting,< afferents from thalamus and cortex, during the crucial phase of cortical target area selection. SP increases during mammalian evolution and culminates in human brain concomitantly with increase in number and diversity of cortico-cortical fibers. The recent neurobiological evidence shows that SP is important site of spontaneous endogeneous activity, building a framework for development of cortical columnar organization. The SP which can be readily visualized on conventional and DTI (diffusion-tensor-imaging) MRI in vivo, today is in the focus of interest of pediatric neurology due to the following facts: (1) SP is the site of early neural activity, (2) SP is the major substrate for functional plasticity, and (3) selective vulnerability of SP may lead to cognitive impairment
    corecore