405 research outputs found

    Dataset on the activation of Mueller cells through macrophages upon hypoxia in the retina

    Get PDF
    The dataset presented in this article complements the article entitled "Myeloid cells contribute indirectly to VEGF expression upon hypoxia via activation of Mueller cells" (C. Nuernberg, N. Kociok, C. Brockmann, T. Lischke, S. Crespo-Garcia, N. Reichhart, S. Wolf, R. Baumgrass, S.A. Eming, S. Beer-Hammer, and A.M. Joussen). This complementary dataset provides further insight into the experimental validation of the VEGF(fl/fl) LysMCre (here named VEGF(mcko)) knockout model used in the main article through genomic and quantitative Real-Time PCR in various murine tissues as well as additional flow cytometry data and immunohistochemical stainings. By providing these data, we aim to enable researcher to reproduce and critically analyze our data

    VEGFR1 signaling in retinal angiogenesis and microinflammation

    Get PDF
    Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, –C, -D, and placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds to VEGF receptors 1 and 2 (VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and microinflammatory cascades within the retina. Expression of VEGFR1 depends on the microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear phagocytes (including microglia), MΓΌller cells, photoreceptor cells, and the retinal pigment epithelium. Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands (VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an opportunity-rich field for further research

    An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models

    Get PDF
    Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size

    Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    Get PDF
    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCastβ„’ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease

    The role of OCT-A in retinal disease management

    Get PDF
    Optical coherence tomography angiography (OCT-A) is a non-invasive, non-dye-based imaging modality that has the potential to enhance our understanding of retinal diseases. While this rapidly advancing imaging modality offers great potential, there is a need for community-wide understanding of the range of technologies and methods for interpreting the images, as well as a need to enhance understanding of images from disease-free eyes for reference when screening for retinal diseases. Importantly, clinical trials have been designed without OCT-A-based endpoints; therefore, caution is required when making treatment decisions based on OCT-A imaging alone. With this in mind, a full understanding of the advantages and limitations of OCT-A will be vital for effective development of the technique within the field of ophthalmology. On behalf of the Vision Academy Steering Committee (sponsored by Bayer), this publication summarizes the views of the authors on the current use of OCT-A imaging and explores its potential for future applications in research and clinical practice

    Serum Heat Shock Protein 27 and Diabetes Complications in the EURODIAB Prospective Complications Study : A Novel Circulating Marker for Diabetic Neuropathy

    Get PDF
    OBJECTIVEβ€”Heat shock protein 27 (HSP27) is a member of the small heat shock protein family of proteins. HSP27 expression is enhanced in target tissues of diabetic microvascular complications, and changes in circulating serum HSP27 levels (sHSP27) have been reported in patients with macrovascular disease. We investigated whether sHSP27 levels were associated with micro- and macrovascular complications in type 1 diabetic patients

    Association between LTA, TNF and AGER Polymorphisms and Late Diabetic Complications

    Get PDF
    BACKGROUND: Several candidate genes on the short arm of chromosome 6 including the HLA locus, TNF, LTA and AGER could be associated with late diabetic complications. The aim of our study was therefore to explore whether polymorphisms (TNF -308 G-->A, LTA T60N C-->A and AGER -374 T-->A) in these genes alone or together (as haplotypes) increased the risk for diabetic complications. METHODOLOGY/PRINCIPAL FINDINGS: The studied polymorphisms were genotyped in 742 type 1 and 2957 type 2 diabetic patients as well as in 206 non-diabetic control subjects. The Haploview program was used to analyze putative linkage disequilibrium between studied polymorphisms. The TNF, LTA and AGER polymorphisms were associated with the HLA-DQB1 risk genotypes. The AGER -374 A allele was more common in type 1 diabetic patients with than without diabetic nephropathy (31.2 vs. 28.4%, p = 0.007). In a logistic regression analysis, the LTA but not the AGER polymorphism was associated with diabetic nephropathy (OR 2.55[1.11-5.86], p = 0.03). The AGER -374 A allele was associated with increased risk of sight threatening retinopathy in type 2 diabetic patients (1.65[1.11-2.45], p = 0.01) and also with increased risk for macrovascular disease in type 1 diabetic patients (OR 2.05[1.19-3.54], p = 0.01), but with decreased risk for macrovascular disease in type 2 diabetic patients (OR 0.66[0.49-0.90], p = 0.009). The TNF A allele was associated with increased risk for macrovascular complications in type 2 (OR 1.53 [1.04-2.25], p = 0.03, but not in type 1 diabetic patients. CONCLUSIONS/SIGNIFICANCE: The association between diabetic complications and LTA, TNF and AGER polymorphisms is complex, with partly different alleles conferring susceptibility in type 1 and type 2 diabetic patients. We can not exclude the possibility that the genes are part of a large haplotype block that also includes HLA-DQB1 risk genotypes

    Ocular Application of the Kinin B1 Receptor Antagonist LF22-0542 Inhibits Retinal Inflammation and Oxidative Stress in Streptozotocin-Diabetic Rats

    Get PDF
    Purpose: Kinin B1 receptor (B1R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B 1R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B1R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress. Methods: Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1 % in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B1R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1b and HIF-1a) and anti-inflammatory (B2R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining). Results: Retinal plasma extravasation, leukostasis and mRNA levels of B 1R, iNOS, COX-2, VEGF receptor type 2, IL-1b and HIF-1a were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B1R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae. Conclusion: B1R displays a pathological role in the early stage of diabetes by increasing oxidative stress and proinflammator

    Influence of halloysite nanotubes on physical and mechanical properties of cellulose fibres reinforced vinyl ester composites

    Get PDF
    Natural fibres are generally added to polymer matrix composites to produce materials with the desirable mechanical properties of higher specific strength and higher specific modulus while at the same time to maintain a low density and low cost. The physical and mechanical properties of polymer composites can be enhanced through the addition of nanofillers such as halloysite nanotubes. This article describes the fabrication of vinyl ester eco-composites and eco-nanocomposites and characterizes these samples in terms of water absorption, mechanical and thermal properties. Weight gain test and Fourier transform infrared analysis indicated that 5% halloysite nanotube addition gave favourable reduction in the water absorption and increased the fibre–matrix adhesion leading to improved strength properties in the eco-nanocomposites. However, halloysite nanotube addition resulted in reduced toughness but improved thermal stability
    • …
    corecore